Chứng Minh Tam Giác Vuông đầy đủ Nhất

Cách chứng minh tam giác vuông là một trong những kiến thức cơ bản trong chương trình Toán lớp 9 và thường xuất hiện trong các bài thi vào lớp 10.

TOP 5 Chứng minh tam giác vuông dưới đây tổng hợp toàn bộ kiến thức về khái niệm, dấu hiệu nhận biết cách chứng minh kèm theo các dạng bài tập tự luyện. Qua đó giúp các bạn học sinh tham khảo, hệ thống lại kiến thức để giải nhanh các bài tập về chứng minh tam giác vuông. Ngoài ra để nâng cao kiến thức môn Toán thật tốt các em xem thêm một số tài liệu như: chứng minh phương trình luôn có nghiệm với mọi m, chuyên đề Giải phương trình bậc 2 chứa tham số, bài tập hệ thức Vi-et và các ứng dụng.

Cách chứng minh tam giác vuông

  • I. Tam giác vuông là gì?
  • II. Dấu hiệu nhận biết tam giác vuông
  • III. Cách dựng tam giác ABC vuông tại A
  • IV. Tính chất của tam giác vuông
  • V. Các cách chứng minh tam giác vuông
  • VI. Các trường hợp bằng nhau của tam giác vuông
  • VII. Tam giác vuông có những đặc điểm gì
  • VIII. Bài tập chứng minh tam giác vuông

I. Tam giác vuông là gì?

- Tam giác vuông là tam giác có một góc bằng 900

Ví dụ: Cho tam giác ABC vuông tại B, ta có hình vẽ minh họa như sau:

II. Dấu hiệu nhận biết tam giác vuông

  • Tam giác có một góc vuông là tam giác vuông
  • Tam giác có hai góc nhọn phụ nhau là tam giác vuông
  • Tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia là tam giác vuông
  • Tam giác có đường trung tuyến ứng với một cạnh bằng nửa cạnh ấy là tam giác vuông
  • Tam giác nội tiếp đường tròn có một cạnh là đường kính của đường tròn là tam giác vuông

III. Cách dựng tam giác ABC vuông tại A

Cho trước cạnh huyền BC = 4,5 cm và cạnh góc vuông AC = 2 cm.

– Dựng đoạn AC = 2 cm

– Dựng góc CAx bằng 90o.

– Dựng cung tròn tâm C bán kinh 4,5 cm cắt Ax tại B. Nối BC ta có Δ ABC cần dựng.

IV. Tính chất của tam giác vuông

Tính chất 1: Trong tam giác vuông, hai góc nhọn phụ nhau.

Định lý Pitago

Trong tam giác vuông, bình phương cạnh huyền bằng tổng bình phương hai cạnh góc vuông.

Định lý Pitago đảo

Nếu một tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh còn lại thì tam giác đó là tam giác vuông.

Tính chất 3: Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền.

V. Các cách chứng minh tam giác vuông

Có tất cả 5 cách chứng minh tam giác vuông như sau:

  • Chứng minh tam giác có một góc bằng 90 độ
  • Chứng minh tam giác có tổng hai góc nhọn bằng 90 độ
  • Chứng minh tam giác có bình phương độ dài một cạnh bằng tổng bình phương độ dài hai cạnh kia. Áp dụng định lý Pitago.
  • Chứng minh tam giác có đường trung tuyến ứng với một cạnh bằng nửa cạnh ấy.
  • Chứng minh tam giác nội tiếp một nửa đường tròn (có 1 cạnh trùng đường kính).

Cách 1: Để chứng minh một tam giác là tam vuông ta chứng minh tam giác đó có tổng 2 góc nhọn bằng 90 độ (2 góc nhọn phụ nhau).

Ví dụ 1: Tam giác ABC có góc B + C = 90°

⇒ Tam giác ABC vuông tại A.

* Cách 2: Để chứng minh một tam giác là tam vuông ta chứng minh tam giác đó có bình phương độ dài một cạnh bằng tổng bình phương độ dài hai cạnh kia.

Ví dụ 2: Tam giác ABC có AB2 + AC2 = BC2

⇒ Tam giác ABC vuông tại A.

* Cách 3: Để chứng minh một tam giác là tam vuông ta chứng minh tam giác đó có đường trung tuyến ứng với một cạnh bằng nửa cạnh ấy.

Ví dụ 3: Tam giác ABC có M là trung điểm BC, biết AM = MB = MC = ½ BC

=> Tam giác ABC vuông tại A.

* Cách 4: Chứng minh tam giác có một góc bằng 90 độ.

+ Cách làm: Đưa góc cần chứng minh vào góc của một tứ giác rồi chứng minh tứ giác đó là hình chữ nhật, hình vuông, hoặc góc tạo bởi 2 đường chéo của hình thoi, hình vuông.

* Cách 5: Để chứng minh một tam giác là tam vuông ta chứng minh tam giác đó nội tiếp đường tròn và có một cạnh là đường kính.

Ví dụ 4: Tam giác OAB nội tiếp đường tròn đường kính AB

=> Tam giác OAB vuông tại O.

VI. Các trường hợp bằng nhau của tam giác vuông

Trường hợp 1: Nếu hai cạnh của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau. (Trường hợp Cạnh - Góc - Cạnh)

Trường hợp 2: Nếu một cạnh góc vuông và một góc kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác vuông đó bằng nhau. (Trường hợp Góc - Cạnh - Góc)

Trường hợp 3: Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau. (Trường hợp Cạnh huyền - Góc nhọn)

Trường hợp 4: Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau. (Trường hợp Cạnh huyền - Cạnh góc vuông)

VII. Tam giác vuông có những đặc điểm gì

Tam giác vuông bằng nhau có những đặc điểm sau:

1. Hai tam giác vuông được gọi là bằng nhau nếu một cạnh của góc vuông và cạnh huyền của tam giác vuông này bằng một cạnh của góc vuông và cạnh huyền của tam giác vuông kia.

2. Trường hợp 1: Hai tam giác vuông có hai cạnh góc vuông bằng nhau (đối với cả hai góc vuông).

3. Trường hợp 2: Hai tam giác vuông có một cạnh góc vuông và góc nhọn kề cạnh đó bằng nhau.

4. Hai tam giác vuông bằng nhau cũng có các cặp cạnh tương ứng bằng nhau, bởi vì cạnh huyền của tam giác vuông chính là cạnh lớn nhất và đối diện với góc vuông.

VIII. Bài tập chứng minh tam giác vuông

Câu 1

Cho tam giác ABC có AB = 6cm, AC = 4,5cm, BC = 7,5cm.

a) Chứng minh tam giác ABC vuông tại A. Tính các góc B, C và đường cao AH của tam giác đó.

b) Hỏi rằng điểm M mà diện tích tam giác MBC bằng diện tích tam giác ABC nắm trên đường nào?

Bài 2. Cho tam giác ABC có D, E thuộc cạnh BC sao cho BD = DE = EC. Biết AD = AE. Biết\mathrm{AD}=\mathrm{AE}\(\mathrm{AD}=\mathrm{AE}\)

a) Chứng minh \widehat{\mathrm{EAB}}=\widehat{\mathrm{DAC}}.\(\widehat{\mathrm{EAB}}=\widehat{\mathrm{DAC}}.\)

b) Gọi M là trung điểm của BC. Chứng minh AM là phân giác của \widehat{DAE }\(\widehat{DAE }\)

c) Giả sử \widehat{\mathrm{DAE}}=60^{\circ}\(\widehat{\mathrm{DAE}}=60^{\circ}\). Tính các góc còn lai của tam giác DAE.

Bài 3. Cho tam giác ABC vuông ở A. Trên tia đối của tia AC lấy điểm D sao cho AD = AC.

a) Chứng minh DABC = DABD

b) Trên tia đối của tia AB, lấy điểm M. Chứng minh DMBD = D MBC.

Bài 4. Cho góc nhọn xOy và tia phân giác Oz của góc đó. Trên Ox, lấy điểm A, trên Oy lấy điểm B sao cho OA = OB. Trên tia Oz, lấy điểm I bất kì. Chứng minh:

a) D AOI = D BOI.

b) AB vuông góc OI..

Bài 5. Cho \triangle \mathrm{ABC}\(\triangle \mathrm{ABC}\)\mathrm{AB}<\mathrm{AC}\(\mathrm{AB}<\mathrm{AC}\). Kẻ tia phân giác \mathrm{AD}\(\mathrm{AD}\) của \widehat{\mathrm{BAC}}\(\widehat{\mathrm{BAC}}\) ( D thuộc BC). Trên canh AC lấy điểm E sao cho A E=A B, trên tia A B lấy điểm F sao cho A F=A C. Chứng minh rằng:

a) \Delta \mathrm{BDF}=\Delta \mathrm{EDC}.\(a) \Delta \mathrm{BDF}=\Delta \mathrm{EDC}.\)

b) \mathrm{BF}=\mathrm{EC}.\(b) \mathrm{BF}=\mathrm{EC}.\)

c) FDE thẳng hàng.

d) \mathrm{AD} \perp \mathrm{FC}\(d) \mathrm{AD} \perp \mathrm{FC}\)

Bài 6) Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 24cm, BH = 18cm.

Tính HC, AB,AC,BC?

Bài 7 Cho tam giác nhọn ABC, đường cao AH. Gọi M, N lần lượt là hình chiếu của H đến AB, AC.

Chứng ninh hai tam giác AMN và ACB đồng dạng.

Bài 8. Cho hình chữ nhật ABCD, đường phân giác của góc B chia đường chéo AC thành hai đoạn 3,6cm và 6,4cm.. Tính các kích thước của hình chữ nhật.

Bài 9. Cho tam giác ABC vuông cân tại A, AB = 5cm.

a) Tính BC;

b) Tính diện tích tam giác ABC;

C) Vẽ đường phân giác BD của tam giác ABC. Tính DA, DC.

10,  Cho tam giác ABC vuông cân tại A, AB = a.

a) Tính BC;

b) Tính diện tích tam giác ABC;

C) Vẽ đường phân giác BD của tam giác ABC. Tính DA, DC.

Bài 10) Cho tam giác ABC cân tại A, I là giao điểm ba đường phân giác của tam giác đó, biết IA = 2 cm; IB = 3CM. Tính AB?

Bài 11. Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 12 cm, tỉ số của hai cạnh HB và HC là 1/4.

a) Tính HB, HC; b) Tính AB, AC; c) Tính diện tích tam giác ABC.

Bài 12) Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E lần lượt là các điểm đối xứng của H qua AB, AC. Chứng minh: DE2 = 4BD.CE.

Bài 13: Cho tam giác ABC có AB = 6cm, AC = 8cm, BC = 10cm.

a. Chứng minh rằng tam giác ABC là tam giác vuông tại A.

b. Vẽ phân giác BE của góc B (E thuộc AC), từ E kẻ EP vuông góc với BC (P thuộc BC). Chứng minh EA = EP.

Bài 14: Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Tính khoảng cách từ trọng tâm G của tam giác ABC đến các đỉnh của tam giác.

Bài 15: Cho tam giác ABC vuông tại A. Biết AB = 6cm, AC = 8cm. Đường thẳng đi qua trung điểm M của BC và vuông góc với BC cắt AC tại N.

a. Tính độ dài cạnh BC

b. Chứng minh góc CBN bằng góc NCB.

c. Trên tia đối của tia NB lấy điểm F sao cho NF = NC. Chứng minh rằng tam giác BEC vuông.

Bài 16: Cho tam giác ABC vuông tại A, biết AB = 5cm, BC = 13cm

a. Tính độ dài AC

b. Kẻ AH vuông góc với BC. Tính AH, BH, CH.

c. Gọi M là trung điểm BC. Tính AM

d. Trên tia đối tia MA lấy E sao cho ME = MA. Chứng minh BE = AC và BE // AC

Bài 17: Cho tam giác ABC vuông tại A.a. Tính AC biết AB = 5cm và BC = 13cm

b. Trên cạnh BC lấy điểm E sao cho BE = BA. Đường thẳng qua E cắt AC tại I sao cho IE vuông góc với BC tại E. So sánh góc ABI và góc CBI

c. Nếu tam giác ABC có góc A = 30O và EC = 6cm. Tính chu vi của tam giác ABC

Từ khóa » Bài Tập Tam Giác Vuông