Chuỗi Số Dương (Infinitive Series) | Toán Cho Vật Lý

Shortlink: http://wp.me/P8gtr-31

1. Các dấu hiệu so sánh (The basic comparison test):

Xét chuỗi \sum\limits_{n=1}^{\infty} {u_n} ,{u_n} {\ge} 0             (1)

Khi đó nếu tổng riêng phần S_{n} là dãy không giảm và nếu nó bị chặn trên thì chuỗi (1) hội tụ.

1.1 Dấu hiệu so sánh hai chuỗi số dương :

1.1.1 Dấu hiệu so sánh 1:

Cho hai chuỗi \sum\limits_{n=1}^{\infty} {u_n} (1), \sum\limits_{n=1}^{\infty} {v_n} (2) thỏa điều kiện: {\exists} {n_{0}} : 0 {\le} {u_{n}} {\le} {v_{n}} , { \forall} n {\ge} n_{o} (*). Khi đó:

Nếu chuỗi \sum\limits_{n=1}^{\infty}{v_n} hội tụ thì \sum\limits_{n=1}^{\infty} {u_n} hội tụ.

Ngược lại, nếu chuỗi \sum\limits_{n=1}^{\infty} {u_n} phân kỳ thì \sum\limits_{n=1}^{\infty} {v_n} phân kỳ.

Chứng minh

Không mất tính tổng quát, giả sử n_0 = 1.

Gọi Sn và Tn là tổng riêng phần tương ứng của chuỗi (1) và chuỗi (2)

Do (*) ta có: Sn ≤ Tn

Vì chuỗi (2) hội tụ nên Tn → T

Vì các số hạng của chuỗi luôn dương nên Tn < T

Suy ra: Sn < T

Vậy Sn bị chặn trên nên nó có giới hạn

1.1.2 Dấu hiệu so sánh 2 :

Cho hai chuỗi số dương \sum\limits_{n=1}^{\infty}{u_n} (1), \sum\limits_{n=1}^{\infty} {v_n} (2) , ({u_{n}} {\ge} 0,  {v_{n}} {\ge} 0 )

Giả sử \lim\limits_{n \to \infty} {{\dfrac{u_{n}}{v_{n}}} = k}

1. Nếu k = 0 thì chuỗi (2) hội tụ suy ra chuỗi (1) hội tụ.

2. 0 \langle k \langle \infty thì hai chuỗi cùng hội tụ hoặc cùng phân kỳ.

3. k = + \infty thì chuỗi (1) hội tụ suy ra chuỗi (2) hội tụ.

Chứng minh

Chứng minh kết quả 1:

Do \lim\limits_{n \to \infty} {{\dfrac{u_{n}}{v_{n}}} = 0} nên:

\forall \epsilon \ge 0, \exists N: \forall n \ge N \Rightarrow \dfrac{u_n}{v_n} \le \epsilon \Rightarrow u_n \le {{\epsilon}.{v_{n}}}.

Vậy theo dấu hiệu so sánh 1, nếu chuỗi (2) hội tụ thì chuỗi (1) hội tụ.

Chứng minh kết quả 2:

Giả sử k \langle + \infty . Khi đó, do \lim\limits_{n \to \infty} {{\dfrac{u_{n}}{v_{n}}} = k}  nên:

\forall \epsilon \ge 0, \exists N: \forall n \ge N \Rightarrow \dfrac{u_n}{v_n} \langle k + \epsilon \Rightarrow u_n \langle (k+ \epsilon )v_n

Vậy theo dấu hiệu so sánh 1, nếu chuỗi (2) hội tụ thì chuỗi (1) hội tụ.

Mặt khác do k \rangle 0 \Rightarrow \lim\limits_{n \to \infty} {{\dfrac{u_{n}}{v_{n}}} = 1/k} \langle + \infty .

Vì vậy, theo trên, nếu chuỗi (1) hội tụ thì chuỗi (2) hội tụ.

Vậy mệnh đề 2 đúng

Kết quả 3 được suy ra từ kết quả 1 và 2.

1.1.3 Tiêu chuẩn tích phân:

Xét hàm số f: [1;+\infty) \to R , f(x) \ge 0 và f giảm. Với mọi n \in N , đặt {a_{n} = f(n)}

Khi đó: tích phân suy rộng \int\limits_{1}^{\infty} {f(x)} hội tụ khi và chỉ khi chuỗi \sum\limits_{n=1}^{\infty} {a_n} hội tụ.

1.2 Tiêu chuẩn D’Alambert và Cauchy:

11.4 Ratio Test, Root Test

Image by mseery via Flickr

1.2.1. Tiêu chuẩn Cauchy (tiêu chuẩn căn thức) – Cauchy’s root test ( Cauchy’s radical test):

Cho \sum a_n là chuỗi số dương. Giả sử rằng:

\lim\limits_{n \to \infty} \sqrt[n]{x_n} = C

Khi đó chúng ta có:

1. Nếu C < 1, thì chuỗi \sum a_n là hội tụ.

2. Nếu C > 1, thì chuỗi \sum a_n là phân kỳ.

3. Nếu C = 1, thì chuỗi \sum a_n có thể hội tụ hoặc phân kỳ. Nói cách khác, ta chưa thể kết luận được sự hội tụ của chuỗi.

1.2.2 Tiêu chuẩn D’Lambert  – ratio test:

Cho \sum a_n là chuỗi số dương sao cho a_n \ne 0 . Giả sử rằng:

\lim\limits_{n \to \infty} { \dfrac{a_{n+1}}{a_n}} = D

Khi đó chúng ta có:

1. Nếu D < 1, thì chuỗi \sum a_n là hội tụ.

2. Nếu D > 1, thì chuỗi \sum a_n là phân kỳ.

3. Nếu D = 1, thì chuỗi \sum a_n có thể hội tụ hoặc phân kỳ. Nói cách khác, ta chưa thể kết luận được sự hội tụ của chuỗi.

Đánh giá:

Chia sẻ:

  • Email
  • In
  • Facebook
Thích Đang tải... Trang: 1 2

Từ khóa » Khảo Sát Sự Hội Tụ Của Chuỗi Số Sau