Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG - Hoc24
Có thể bạn quan tâm
HOC24
Lớp học Học bài Hỏi bài Giải bài tập Đề thi ĐGNL Tin tức Cuộc thi vui Khen thưởng- Tìm kiếm câu trả lời Tìm kiếm câu trả lời cho câu hỏi của bạn
Lớp học
- Lớp 12
- Lớp 11
- Lớp 10
- Lớp 9
- Lớp 8
- Lớp 7
- Lớp 6
- Lớp 5
- Lớp 4
- Lớp 3
- Lớp 2
- Lớp 1
Môn học
- Toán
- Vật lý
- Hóa học
- Sinh học
- Ngữ văn
- Tiếng anh
- Lịch sử
- Địa lý
- Tin học
- Công nghệ
- Giáo dục công dân
- Tiếng anh thí điểm
- Đạo đức
- Tự nhiên và xã hội
- Khoa học
- Lịch sử và Địa lý
- Tiếng việt
- Khoa học tự nhiên
- Hoạt động trải nghiệm
- Hoạt động trải nghiệm, hướng nghiệp
- Giáo dục kinh tế và pháp luật
Chủ đề / Chương
Bài học
HOC24
Khách vãng lai Đăng nhập Đăng ký Khám phá Hỏi đáp Đề thi Tin tức Cuộc thi vui Khen thưởng - Lớp 12
- Toán lớp 12
Chủ đề
- Chương 1:ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ
- Chương 2: HÀM SỐ LŨY THỪA. HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT
- Chương 1. Ứng dụng đạo hàm để khảo sát hàm số
- Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG
- Chương 1. Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số
- CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ ĐỒ THỊ CỦA HÀM SỐ
- Chương 2. Vecto và hệ tọa độ trong không gian
- Chương 4: SỐ PHỨC
- Chương 2. Vectơ và hệ trục tọa độ trong không gian
- CHƯƠNG II. TỌA ĐỘ CỦA VECTƠ TRONG KHÔNG GIAN
- Chương 3. Các số đặc trưng đo mức độ phân tán cho mẫu số liệu ghép nhóm
- Chương 3. Các số đo đặc trưng đo mức độ phân tán của mẫu số liệu ghép nhóm
- CHƯƠNG III. CÁC SỐ ĐẶC TRƯNG ĐO MỨC ĐỘ PHÂN TÁN CHO MẪU SỐ LIỆU GHÉP NHÓM
- Chương 4. Nguyên hàm. Tích phân
- Chương 1: KHỐI ĐA DIỆN
- Chương 5. Phương trình mặt phẳng, đường thẳng, mặt cầu
- Chương 2: MẶT NÓN, MẶT TRỤ, MẶT CẦU
- Chương 6. Xác suất có điều kiện
- Chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN.
- Đề trắc nghiệm chuyên để thể tích
- Đề luyện thi tốt nghiệp phổ thông, cao đẳng, đại học
- CHƯƠNG IV. NGUYÊN HÀM. TÍCH PHÂN
- CHƯƠNG V. PHƯƠNG TRÌNH MẶT PHẲNG. ĐƯỜNG THẲNG. MẶT CẦU TRONG KHÔNG GIAN
- CHƯƠNG VI. MỘT SỐ YẾU TỐ XÁC SUẤT
- Chương 4. Nguyên hàm và tích phân
- Chương 5. Phương pháp tọa độ trong không gian
- Chương 6. Xác suất có điều kiện
- Lý thuyết
- Trắc nghiệm
- Giải bài tập SGK
- Hỏi đáp
- Đóng góp lý thuyết
Câu hỏi
Hủy Xác nhận phù hợp
- Phi Vu
cho \(\int f\left(4x\right)dx\) = x2+3x+C. Mệnh đề nào sau đây đúng?
A. \(\int f\left(x+2\right)dx\) =x2+7x+C
B.\(\int f\left(x+2\right)dx\) =\(\frac{x^2}{2}\)+4x+C
C.\(\int f\left(x+2\right)dx\)=\(\frac{x^2}{4}\)+2x+C
D.\(\int f\left(x+2\right)dx\)=\(\frac{x^2}{4}\)+4x+C
Giúp mình bài này với, cám ơn mọi người nhiều
Lớp 12 Toán Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG 1 0
Gửi Hủy
Nguyễn Việt Lâm CTV \(\int f\left(4x\right)dx=\frac{1}{4}\int f\left(4x\right)d\left(4x\right)=\frac{1}{16}\left(4x\right)^2+\frac{3}{4}\left(4x\right)+C\)
\(\Rightarrow\int f\left(4x\right)d\left(4x\right)=\frac{1}{4}\left(4x\right)^2+3.\left(4x\right)+C\)
\(\Rightarrow\int f\left(x+2\right)dx=\int f\left(x+2\right)d\left(x+2\right)=\frac{1}{4}\left(x+2\right)^2+3\left(x+2\right)+C\)
\(=\frac{1}{4}x^2+4x+C\)
Đúng 0 Bình luận (0) Khách vãng lai đã xóa
Gửi Hủy Các câu hỏi tương tự
- Tô Cường
Tìm họ nguyên hàm của các hàm số sau:
a) \(\int\cos\left(x\right)^{\sin\left(x\right)}dx\)
b) \(\int\frac{\sqrt{x}}{4-x^2}dx\)
c) \(\int\frac{\sqrt{1+x^2}}{x}dx\)
d) \(\int\ln\left(\ln\left(x\right)\right)dx\)
Xem chi tiết Lớp 12 Toán Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG 1 0
- Tô Cường
Câu 1: Cho hàm số \(f\left(x\right)\) liên tục trên tập xác định thoả mản \(\int\limits^1_{-1}f\left(x^2\right)dx=2\) và \(\frac{f\left(x\right)}{f’\left(x\right)}=-x\) . Khi này tính \(\int\limits^e_1f\left(x\right)dx\)
a) -1
b) 0
c) 2
d) Đáp án khác
Xem chi tiết Lớp 12 Toán Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG 0 0
- Hoang Khoi
\(\int tan\left(x\right)-ln^{15}\left(cos\left(x\right)\right)dx\)
\(\int\dfrac{x^4+x^2+1}{2x^3+5x^2-7}dx\)
tính nguyên hàm , ai giúp mình 2 bài này với hoặc 1 bài thôi cũng đc ạ , xin cảm ơn nhiều.
Xem chi tiết Lớp 12 Toán Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG 0 0
- Tô Cường
Câu 1: Họ nguyên hàm của hàm số \(\int\frac{3\sqrt{ln\left(x\right)+1}}{x}dx\) có dạng \(ln\left(\left(xe\right)^a\right).\sqrt{ln\left(xe\right)+b}\) với \(a,b\) là các số thực. Tính \(a^2+b^2\)
a) 1
b) 2
c) 4
d) 5
Câu 2: Cho hai số thực \(a,b\) \(\left(a< b\right)\) thoả mản \(\int\limits^b_a\frac{1}{\sqrt{x}}dx=2\) và \(a^2+b^2=17\). Tính \(a^b+b^{-a}\)
a) \(\frac{2}{3}\)
b) \(1\)
c) \(0\)
d) \(\frac{5}{4}\)
Câu 3: Cho hàm số \(f\left(x\right)\) xác định trên \(R\). Và thoả mản \(f\left(\sqrt{2x}\right)=f’\left(x\right)\) và \(\int\limits^e_1f\left(\sqrt{ln\left(x\right)}\right)dx=3\) . Tính \(\int\limits^{\pi}_02.f\left(cos\left(2x\right)\right)dx\) bằng
a) \(0\)
b) \(2\pi\)
c) \(3\pi\)
d) \(9,425\)
Câu 4: Họ nguyên hàm của hàm số \(\int\frac{3x+a}{x^2+4}dx\) có dạng \(\frac{3}{2}ln\left(x^2+4\right)+arctan\left(\frac{x}{2}\right)+C,C\in R\). Tính \(\int\limits^{\frac{e}{a+2}}_1ln\left(x\right)dx\) bằng
a) 1
b) \(-\frac{ln\left(2^e\right)}{2}+1\)
c) \(1-\frac{ln\left(3^e\right)}{3}\)
d) Đáp án khác
Câu 5: Gọi \(F\left(x\right)\) là một nguyên hàm của hàm số \(f\left(x\right)\). Biết \(f”\left(x\right)=-\frac{1}{4x\sqrt{x}},f’\left(2\right)=2+\frac{1}{2\sqrt{2}}\), \(f\left(4\right)=10\) và \(F\left(1\right)=1+\frac{2}{3}\). Tính \(\int\limits^1_0F\left(x\right)dx\) bằng
a) \(\frac{5}{3}\)
b) \(\frac{3}{4}\)
c) \(\frac{3}{5}\)
d) \(\frac{4}{3}\)
Xem chi tiết Lớp 12 Toán Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG 2 0
- haudreywilliam
Cho hàm số \(y=f\left(x\right)\) liên tục trên đoạn \(\left[-1;3\right]\) thoả mãn \(\int\limits^1_0f\left(x\right)dx=3\) và \(\int\limits^3_1f\left(x\right)dx=6\) . Tính \(\int\limits^3_{-1}f\left(\left|x\right|\right)dx\)
Xem chi tiết Lớp 12 Toán Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG 1 0
- Tô Cường
Câu 41: Cho hàm số \(f\left(x\right)\) liên tục trên R và thoả mãn \(f\left(0\right)=0\) và \(f\left(x\right)f’\left(\frac{1}{x^2+1}\right)\left(x^2+1\right)=2x^4+4x^3+4x^2+8x\). Tính \(\int\limits^3_0f\left(x\right)dx\)
a) 0 b) 18 c) \(\frac{117}{4}\) d) 15
Xem chi tiết Lớp 12 Toán Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG 0 0
- Tô Cường
Câu 1: Gọi nguyên hàm của hàm số \(\int\frac{sin\left(x\right)}{sin\left(x\right)+cos\left(x\right)}dx\) có dạng \(ax+bln\left|sin\left(x\right)+cos\left(x\right)\right|+C\) (a,b là các số hữu tỉ) và nguyên hàm của hàm số \(\int cos^2\left(x\right)dx\) có dạng \(cx+\frac{1}{2d}sin\left(dx\right)+C\) ( c,d là các số hữu tỉ) . Khi này tính \(I=2a-2b+2c+d\) bằng
a) 4
b) 5
c) \(\frac{3}{2}\)
d) \(\frac{25}{4}\)
Câu 2. Cho hàm số \(f\left(x\right)=sin\left(ln\left(x\right)\right)\) và \(g\left(x\right)=cos\left(ln\left(x\right)\right)\)
a) Tích nguyên hàm của \(\int\left[f\left(x\right)-g\left(x\right)\right]dx\)
b) Biết \(\int\limits^{e^{\pi}}_1f\left(x\right)dx=\frac{1}{a}\left(e^b+c\right)\) . Tính \(\left(a-c\right)^2\cdot b\)
Câu 3: Cho hàm số \(f\left(x\right)\) có đạo hàm liên tục trên đoạn \(\left[0;1\right]\) thoả mản điều kiện \(f\left(2020x+2019\right)=2020f\left(x\right),\forall x\in R.\) Tính tích phân \(\int\limits^1_03\left[f\left(x\right)\right]^2dx\) bằng
a) \(\frac{7}{3}\left[f\left(1\right)\right]^2\)
b) \(\frac{3}{7}\left(f\left(1\right)\right)^2\)
c) \(7\left[f\left(-1\right)\right]^2\)
d\(\frac{3}{7}\left[f\left(-1\right)\right]^2\)
Xem chi tiết Lớp 12 Toán Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG 2 0
- Trang Nguyen
a) \(\int sin^2\frac{x}{2}dx\)
b) \(\int cos^2\frac{x}{2}dx\)
c) \(\int\frac{2x+1}{x^2+x+5}dx\)
d) \(\int\left(2tanx+cotx\right)^2dx\)
Xem chi tiết Lớp 12 Toán Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG 1 0
- Nguyễn Tùng Anh
Cho hàm số f(x) liên tục trên \([-\Pi;\Pi]\)
Chứng minh: \(\int\limits^{\Pi}_0x.f\left(sinx\right)dx=\dfrac{\Pi}{2}\int\limits^{\Pi}_0f\left(sinx\right)dx\)
Xem chi tiết Lớp 12 Toán Chương 3: NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG 0 0Khoá học trên OLM (olm.vn)
- Toán lớp 12
- Ngữ văn lớp 12
- Tiếng Anh lớp 12
- Vật lý lớp 12
- Hoá học lớp 12
- Sinh học lớp 12
- Lịch sử lớp 12
- Địa lý lớp 12
- Giáo dục công dân lớp 12
Đề thi đánh giá năng lực
- Đại học Quốc gia Hà Nội
- Đại học Quốc gia Hồ Chí Minh
- Đại học Bách khoa Hà Nội
Khoá học trên OLM (olm.vn)
- Toán lớp 12
- Ngữ văn lớp 12
- Tiếng Anh lớp 12
- Vật lý lớp 12
- Hoá học lớp 12
- Sinh học lớp 12
- Lịch sử lớp 12
- Địa lý lớp 12
- Giáo dục công dân lớp 12
Đề thi đánh giá năng lực
- Đại học Quốc gia Hà Nội
- Đại học Quốc gia Hồ Chí Minh
- Đại học Bách khoa Hà Nội
Từ khóa » Nguyên Hàm F(4x)dx=x^2+3x+c
-
Cho Nguyên Hàm F(4x)dx = X^2 + 3x+C. Mệnh đề Nào Dưới đây đúng?
-
Cho Int F( 4x )dx = X^2 + 3x + C. Mệnh đề Nào Dưới đây đúng?
-
Cho ∫f(4x)dx=x^2+3x+c. Mệnh đề Nào Dưới đây đúng
-
Cho Nguyên Hàm F(4x)dx = X^2 + 3x+C. Mệnh đề ...
-
Cho Nguyên Hàm F(4x)dx = X^2 + 3x+C. Mệnh ...
-
Cho $\int {f\left( {4x} \right)dx = {x^2} + 3x + C} $. Mệnh đề Nào Sau ...
-
Cho ∫f(4x) Dx=x2+3x+c . Mệnh đề Nào Dưới đây đúng?
-
Cho Nguyên Hàm F(4x)dx = X^2 + 3x+C. Mệnh đề Nào Dưới đây đúng ...
-
Cho Int (f( (4x) )dx = (x^2) + 3x + C) . Mệnh đề Nào Sau đây đúng