Chuyên đề Phân Dạng Giải Bài Tập Về đòn Bẩy Cho Học Sinh Khá Giỏi
Có thể bạn quan tâm
- Trang chủ >>
- Giáo án - Bài giảng >>
- Vật lý
Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (295.16 KB, 17 trang )
CHUYÊN ĐỀ“PHÂN DẠNG, GIẢI BÀI TẬP VỀ ĐÒN BẨY CHO HỌC SINH KHÁ GIỎI ”A/ CƠ SỞ XÂY DỰNG CHUYÊN ĐỀI/Nội dung trong chương trình hiện hành:Áp dụng các dạng bài toán cơ bản về đòn bẩy thuộc phần cơ cho học sinhtrong bậc THCS, tham gia đội tuyển học sinh giỏi.Chuyên đề nghiên cứu phương pháp bồi dưỡng kĩ năng nhận dạng và giải các dạngbài toán về phần đòn bẩy cơ họcII/Lí do xác định chuyên đềTrong quá trình giảng dạy và bồi dưỡng học sinh giỏi ở trường tôi còn gặpnhiều trở ngại trong việc giúp cho học sinh biết phân tích về các dạng toán về cơ học,trong phần đòn bẩy nhất là các bài toán phức tạp về cách phân tích đề bài, nhiều họcsinh còn gặp khó khăn chưa tìm ra cách giải quyết, thường thì phân tích bài toán cònthiếu cho nên dẫn đến giải sai, giải thiếu…Chính vì vậy mà tôi đã áp dụng chuyên đề này nhằm giúp học sinh biết phântích và nắm các dạng bài toán trong phần đòn bẩy.B/ NỘI DUNG VÀ BIỆN PHÁP THỰC HIỆNI/ Thực trạng về việc giải bài tập vật lí của học sinhQua nhiều năm giảng dạy vật lý ở trường THCS, đối với học sinh vấn đề giảivà sửa các bài tập vật lý học sinh còn gặp nhiều khó khăn vì học sinh thường khôngnắm vững lý thuyết, không có giờ luyện tập ở lớp hoặc nếu có thì rất ít, chưa có nhiềukỹ năng vận dụng kiến thức vật lý về phần đòn bẩy. Vì vậy các em giải bài tập mộtcách mò mẫm, không có định hướng rõ ràng, áp dụng máy móc và nhiều khi khônggiải được, có nhiều nguyên nhân sau :- Học sinh chưa có nhiều phương pháp để giải bài tập vật lý.- Chưa có những kỹ năng toán học cần thiết để giải bài tập vật lý.- Phân phối chương trình vật lý 8 không có tiết dành riêng để giải bài tập,do đó kỷ năng giải bài tập của học sinh là rất hạn chế.Vì vậy việc rèn luyện và đào tạo đội ngũ học sinh giỏi môn Vật lý đòi hỏi giáo viênvà học sinh phải nỗ lực rất nhiều mới có được kết quả cao.II/ Cơ sở lý luậnTrong các bài tập Vật lý trong trương chình THCS, các bài toán phần máy cơcũng rất đa dạng và phong phú, đa số được trình bày dưới dạng định lượng. Học sinhsẽ không giải quyết được bài toán nếu như không nắm được các kiến thức và kĩ năngphân tích về các dạng và đặc điểm của đòn bẩyKhi giải quyết các bài toán trong phần này học sinh cần nắm được các kiếnthức cơ bản .Bài tập về đòn bẩy rất đa dạng nhưng để làm các bài tập đó trước tiênhọc sinh phải nắm vững được các khái niệm cơ bản như: Khái niệm đòn bẩy, cánh tayđòn của lực, điểm tựa. Ngoài việc nắm vững khái niệm, người học cũng phải biết xácđịnh các lực tác dụng lên đòn bẩy và nắm được điều kiện cân bằng của đòn bẩy.Khiđã hiểu rõ các khái niệm thì việc tiến hành giải bài toán sẽ thuận lợi hơn.Với bài toánvề đòn bẩy, cần phải phân tích cụ thể để thuận lợi cho việc giải.III/Nội dung thực hiện* Các kiến thức cần ghi nhớ.1. xác định điểm tựa của đòn bẩy.- Điểm tựa là điểm mà ở đó đòn bẩy có thể xoay chuyển được, có nhiều loại như :Oa/.- Điểm tựa nằm trong khoảng hai lực (Hình A)F1Hình AF2b/.- Điểm tựa nằm ngoài khoảng hai lực (Hình B)FOHình BF2c/.Ngoài ra trong một bài toán về đòn bẩy còn có nhiều cách chọn điểm tựaví dụ như hình CTBOAF(Hình C)Ta thấy, hình C có thể chọn điểm tựa tại điểm B lúc này có hai lực tác dụng lênđòn bẩy đó là lực F tại điểm O và lực thứ hai là lực căng T tại điểm A.- Cũng có thể chọn điểm tựa tại điểm A khi này cũng có hai lực tác dụng lênđòn bẩy là lực kéo F tại điểm O và phản lực tại B.2.* Xác định cánh tay đòn của các lực:-Khoảng cách giữa điểm tựa O và phương của lực gọi là cánh tay đòn của lực.Việc xác định cánh tay đòn của lực rất quan trọng vì nếu xác định sai sẽ dẫn đến kếtquả sai. Trên thực tế học sinh rất hay nhầm cánh tay đòn với đoạn thẳng từ điểm tựađến điểm đặt của lực. Sau khi phân tích có thể áp dụng điều kiện cân bằng của đònbẩy để giải bài toán.* Phân loại bài tập và phương pháp giải bài tập.Loại 1: Xác định lực và cánh tay đòn của lựcBài 1:Hai bản kim loại đồng chất tiết diện đều có cùng chiều dài l = 20cm và cùng tiếtdiện nhưng có trọng lượng riêng khác nhau d1 = 1,25 d2. Hai bản được hàn dính lại ởmột đầu O và được treo bằng sợi dây. Để thanh nằm ngang người ta thực hiện haibiện pháp sau:a) Cắt một phần của thanh thứ nhất và đem đặt lênchính giữa của phần còn lại. Tìm chiều dài phần bị cắt.b) Cắt bỏ một phần của bản thứ nhất.Tìm phần bị cắt đi.l1lO*Phân tích:Trong mỗi trường hợp cần xác định lực tác dụng và cánh tay đòn của lực.+ ở trường hợp1:Vì cắt một phần của bản thứ nhất và lại đặt lên chính giữa của phần còn lại nên lực tácdụng không thay đổi, cánh tay đòn của lực này thì thay đổi.+ ở trường hợp2: Do cắt bỏ một phẩn của bản thứ nhất nên cả lực và cánh tay đòn củalực đều thay đổi.- Khi xác định được lực và cánh tay đòn của lực ta áp dụng điều kiện cân bằngcủa đòn bẩy vào giải bài toán:Lời giải: a/.Gọi x là chiều dài phần bị cắt. Do đó được đặt lên chínhgiữa của phần còn lại nên trọng lượng của bản thứ nhất không thay đổiVì thanh nằm cân bằng nên ta có: P1.l-xl= P2 .22Gọi S là tiết diện của mỗi bản, ta có:d1sl.l-xl= d 2 sl.22x=> d1 (l-x) = d2(l) ó x = (1 -d2)ld1lOVới: d1=1,25 d2 (l = 20cm)=> x = (1 -d2).20 = (1 - 0,8)20 = 4(cm) Vậy chiều dài phần bị cắt là: 4 cm1, 25d 2b) Gọi y ( y< 20cm)là phần bị cắt bỏ đi trọng lượng còn lại của bản là : P1' = P1 .Do thanh cân bằng nên ta có: P1' .=> d1 s(l - y )(l-yl) = d 2 sl.22ó y 2 - 2ly + (1 -d2 2)l = 0d1l-yll-yl= P2 .l2=> (l - y ) 2 =d2 2ld1=> y 2 - 40 y + 80 = 0Giải pt ta có: y1 = 20 + 8 5 > 20 cm ( loại)y1 = 20 - 8 5 » 20 – 17,89 = 2,11 (cm)Vậy chiều dài phần bị cắt bỏ là 2,11 cmBài 2:BNgười ta dùng một xà beng để nhổ mộtFcây đinh cắm sâu vào gỗ.( hình vẽ)a) Khi tác dụng một lực F = 100N’FaAOvuông góc với OB tại đầu B ta sẽ nhổ đượcFCHđinh. Tính lực giữ của gỗ vào đinh lúc này ?Cho biết OB bằng 10 lần OA và a = 450.b) Nếu lực tác dụng vào đầu B vuông góc với tấm gỗ thì phải tác dụng một lựccó độ lớn bằng bao nhiêu mới nhổ được đinh?* Phân tích :- Xác định cánh tay đòn của lực F, F’ và FCVì FC vuông góc với OA nên OA là cánh tay đòn của FCa) Vì F vuông góc với OB nên OB là cánh tay đòn của Fb) Vì F’ có phương vuông góc với mặt gỗ nên OH là cánh tay đòn của F’ .Sau khiđã xác định đúng lực và cánh tay đòn của lực ta áp dụng điều kiện cân bằngcủa đòn bẩy và tính được các đại lượng cần tìm.Bài giải:a) Gọi FC là lực cản của gỗ. Theo quy tắc cân bằng của đòn bẩy ta có:FC . OA = F.OB Þ FC =F .OB= F .10 = 100 N .10 = 1000 NOAVậy lực giữ của gỗ vào đinh lúc này là 1000Nb) Nếu lực F’ vuông góc với tấm gỗ, lúc này theo quy tắc cân bằng của đòn bẩy ta có:FC.OA = F’.OH=> F ' =Với OH =OB2( vì DOBH vuông cân)OA.FCOA. 2=. 2 .1000 = 100 2 (N)OB10.OALoại 2: Chọn điểm tựa của đòn bẩyBài 1:Một chiếc xà không đồng chất dài l = 8 m, khối lượng 120 kg được tì hai đầu A,B lên hai bức tường. Trọng tâm của xà cách đầu A một khoảng GA = 3 m. Hãy xácđịnh lực đỡ của tường lên các đầu xàFA AGPBFB*Phân tích:- Do xà có hai điểm tựa (hai giá đỡ) xà chịu tác dụng của ba lực FA, FB và P.Với loại toán này cần phải chọn điểm tựa :- Để tính FA phải coi điểm tựa của xà tại B.- Để tính FB phải coi điểm tựa của xà tại A.áp dụng điều kiện cân bằng của đòn bẩy cho từng trường hợp để giải .Chú ý: Với loại toán này cần chú ý: các lực nâng và trọng lực còn thoả mãn điều kiệncân bằng của lực theo phương thẳng đứng có nghĩa P = FA + FB.Trọng lượng của xà bằng P .Trọng lượng của xà tập trung tại trọng tâm G của xà.Xà chịu tác dụng của 3 lực FA, FB, PBài giải:Trọng lượng của xà bằng: P = 10.120 = 1200 (N)Xà chịu tác dụng của 3 lực FA, FB, PĐể tính FA ta coi xà là một đòn bẩy có điểm tựa tại B. Để xà đứng yên ta có:FA.AB = P.GB = FA = P.GB3= 1200 = 750 (N)AB8Để tính FB ta coi xà là một đòn bẩy có điểm tựa tại A xà đứng yên khi:FB.AB = P.GA = FB = P.GA3= 1200 = 350 (N)AB8Vậy lực đỡ của bức tường đầu A là 750 (N), của bức tường đầu B là 450 (N).Bài 2:Một cái sào được treo theo phương nằm ngang bằng hai sợi dây AA’ và BB’. Tạiđiểm M người ta treo một vật nặng có khối lượng 70 kg. Tính lực căng của các sợidây AA’ và BB’.Cho biết: AB = 1,4 m; AM = 0,2m.A’B’TBTAMBAPPhân tích:Xét Trọng lượng của vật nặng là:P =?Gọi lực căng của các sợi dây AA’ và BB’ lần lượt là: TA và TB.Cái sào chịu tác dụng của 3 lực Là ? (TA, TB và P).Để tính TA coi sào như một đòn bẩy có điểm tựa tại B.Để sào nằm ngang ta có:TA.AB = P.MBBài giải: Trọng lượng của vật nặng là: P = 10.70 = 700 (N)Gọi lực căng của các sợi dây AA’ và BB’ lần lượt là: TA và TB.Cái sào chịu tác dụng của 3 lực TA, TB và P.Để tính TA coi sào như một đòn bẩy có điểm tựa tại B.Để sào nằm ngang ta có: TA.AB = P.MB=> TA =P.MB(1,4 - 0,2)= 700.= 600 (N)AB1,4Để tính TB coi A là điểm tựa. Để sào nằm ngang ta có: TB.AB = P.MA=> TA =P.MA0,2= 700.= 100 (N)AB1,4Vậy: Lực căng của sợi dây AA’ là 600 (N) của sợi dây BB’ là 100 (N)Loại 3: Khi đòn bẩy chịu tác dụng của nhiều lực.* Phương pháp:- Xác định tất cả các lực tác dụng lên đòn bẩy- Xác định các lực làm đòn bẩy quay theo cùng một chiều áp dụng quy tắc sau:“Đòn bẩy sẽ nằm yên hoặc quay đều, nếu tổng tác dụng của các lực làm đòn bẩyquay trái bằng tổng tác dụng của các lực làm đòn bẩy quay phải”Bài 1: Một chiếc xà đồng chất tiết diện đều. Khối lượng 20 kg, chiều dài 3 m. Tì haiđầu lên hai bức tường. Một người có khối lượng 75 kg đứng cách đầu xà A là 2m.Xác định xem mỗi bức tường chịu tác dụng một lực bằng bao nhiêu?FA AGOBPP1FBPhân tích:Các lực tác dụng lên xà là:- Lực đỡ FA, FB- Trọng lượng của xà P = ?- Trọng lượng của người P1 = ? (N)Vì xà đồng chất tiết diện đều nên trọng tâm của xà sẽ ở chính giữa xà: GA = GBngười đứng ở O cách A là ? mĐể tính FB coi đầu A là điểm tựa, áp dụng quy tắc cân bằng của đòn bẩy khi cónhiều lực tác dụng ta có: FB.AB = P.AG + P1.AOGiải:Các lực tác dụng lên xà là: - Lực đỡ FA, FB- Trọng lượng của xà P = 10.20 = 200 (N)- Trọng lượng của người P1 = 10.75 = 750 (N)Vì xà đồng chất tiết diện đều nên trọng tâm của xà sẽ ở chính giữa xà=> GA = GB = 1,5 mGiả sử người đứng ở O cách A là OA = 2 mĐể tính FB coi đầu A là điểm tựa, áp dụng quy tắc cân bằng của đòn bẩy khi cónhiều lực tác dụng ta có:FB.AB = P.AG + P1.AOFA.AB = P.GB + P1.OB=> FB =P. AG + P1 . AO 200.1,5 + 750.2== 600 (N)AB3=> FA =P.GB + P1 .OB 200.1,5 + 750.1== 350 (N)AB3Vậy: tường A chịu tác dụng một lực là 600 (N) tường B là 350 (N) .Bài 2:Một người muốn cân một vật nhưng trongtay không có cân mà chỉ có một thanh cứng cóACOBCtrọng lượng P = 3N và một quả cân có khốilượng 0,3 kg. Người ấy đặt thanh lên một điểmtựa O trên vật vào đầu A. Khi treo quả cân vào đầu B thì thấy hệ thống cân bằng và1412thanh nằm ngang. Đo khoảng cách giữa vật và điểm tựa thấy OA = l và OB = l .Hãy xác định khối lượng của vật cần cân.HƯỚNG DẪN: Các lực tác dụng lên thanh ACGồm có: - Trọng lượng P1, P2 của các vật treo tại A và BTrọng lượng P của thanh tại trung điểmcủa thanh OI =lthanh cân bằng khi:4P1. OA = P.OI + P2.OB=> P1 =OAIPBCP2P1P.OI + P2 .OBVới P2 = 10 m , P2 = 10.0,3 = 3 (N)OAll3. + 3.3.OI + 3.OB2 = 9 (N) Khối lượng của vật là: m = P1 = 9 = 0,9 (kg)P1= 4lOA10 104Loại 4: Lực đẩy Acsimét tác dụng lên vật treo ở đòn bẩy* Phương pháp giải của dạng toán liên quan đến lực đẩy AcsimetVới dạng toán liên quan đến lực đẩy Acsimét cần nhớ một số công thức :F = d.V.Trong đó - F là lực đẩy Acsimét- d là trọng lượng riêng của chất lỏng- V là thể tích chất lỏng bị vật chiếm chỗ*Phương pháp giải: Cần nhớ các quy tắc hợp lực:+ Hợp lực của hai lực F1, F2 cùng phương ngược chiều có độ lớn là: F = | F1- F2 |+ Hợp lực của hai lực F1, F2 cùng phương cùng chiều có độ lớn là: F = F1 + F2a/.Khi chưa nhúng vật vào trong chất lỏng, đòn bẩy thăng bằng xác định lực,cánh tay đòn và viết được điều kiện cân bằng của đòn bẩy.b/- Khi nhúng vào trong một chất lỏng, đòn bẩy mất cân bằng.Cần xác định lại điểm tựa, các lực tác dụng và cánh tay đòn của các lực. Sau đóáp dụng điều kiện cân bằng của đòn bẩy để giải bài toán.Áp dụng:Bài 1: Hai quả cầu A, B có trọng lượng bằng nhau nhưng làm bằng hai chấtkhác nhau, được treo vào đầu của một đòn cứng có trọng lượng không đáng kể và cóđộ dài l = 84 cm. Lúc đầu đòn cân bằng. Sau đó đem nhúng cả hai quả cầu ngập trongnước. Người ta thấy phải dịch chuyển điểm tựa đi 6 cm về phía B để đòn trở lại thăngbằng.Tính trọng lượng riêng của quả cầu BBiết trọng lượng riêng của quả cầu A là4OAO’BFFPP3dA = 3.10 N/m ,của nước là dn = 104 N/m3Phân tích: Vì trọng lượng hai quả cầu cân bằngnhau nên lúc đầu điểm tựa O ởchính giữa đòn: OA = OB = 42 cmKhi nhúng A, B vào nước: O'A = 48 cm, O'B = 36 cmLực đẩy Acsimet tác dụng lên A và B là:FA = d n .PdAVàFB = d n .PdBHợp lực tác dụng lên quả cầu A là: P – FAHợp lực tác dụng lên quả cầu B là: P – FB- Để đòn bẩy cân bằng khi A, B được nhúng trong nước ta có:(P – FA). O’A = (P – FB).O’BThay các giá trị vào ta có:(P - d nPP)48 = ( P - d n)32dAdBó dB =ó (1 -dnd)3 = (1 - n )2dAdB3d n d A3.10 4.3.10 43== 9.10 4 (N/m )444d n - d A 4.10 - 3.10Vậy trọng lượng riêng của quả cầu B là: dB = 9.104 (N/m3)Bài 2: Hai quả cầu bằng nhôm có cùng khối lượng được treo vào hai đầu A, Bcủa một thanh kim loại mảnh nhẹ. Thanh được giữ thăng bằng nhờ dây mắc tại điểmgiữa Ocủa AB. Biết OA = OB = l = 25 cm. Nhúng quả cầu ở đầu B vào nước thanh AB mấtthăng bằng. Để thanh thăng bằng trở lại ta phải dời điểm treo O về phía nào? Mộtđoạn bao nhiêu? Cho khối lượng riêng của nhóm và nước lần lượt là: D1 = 2,7 g/cm3;D2 = 1 g/cm3Phân tích:Khi quả cầu treo ở B được nhúng vào nước, ngoài trọng lượng P nó còn chịu tácdụng của lực đẩy Acsimet nên lực tổng hợp giảm . Do đó cần phải dịch chuyểnđiểm treo về phía A một đoạn x để cho cánh tay đòn của quả cầu B tăng lên.Vì thanh cân bằng trở lại nên ta có:P.(l-x) = (P-F)(l+x)ó 10D1V(l-x) = (10D1V – 10D2V)(l+x)ABO( l -x )( l +x )(với V là thể tích của quả cầu)Fó D1(l-x) = (D1-D2)(l+x)ó (2D1-D)x=D2lD2 l1ó x=l=.25 = 5,55 (cm)2 D1 - D22.2,7 - 1PPVậy cần phải dịch điểm treo O về phái A một đoạn x = 5,55 cmL2O2Loại 5: Khi điểm tựa dịch chuyển(Xác định giá trị cực đại, cực tiểu.)ABài 1: Cho một thước thẳng AB đồngECL1O1BDP2chất tiết diện đều, có độ dài l =24 cm trọngP1lượng 4N. Đầu A treo một vật có trọng lượngP3 = 2N. Thước đặt lên một giá đỡ nằm ngangP3CD = 4 cm. Xác định giá trị lớn nhất và nhỏ nhất của khoảng cách BD để cho thướcnằm cân bằng trên giá đỡ.Phân tích: Xét trạng thái cân bằng của thước quanh trục đi qua mép D của giá đỡứng với giá trị nhỏ nhất của AD. Lúc đó thước chia làm hai phần:+ Phần BD có trọng lượng P1 đặt ở 01 là trung điểm của DB+ Phần AD có trọng lượng P2 đặt ở 02 là trung điểm của ADMép D ở điểm E trên thước.Bài giải:Điều kiện cân bằng của trục quay D là:P3.AD + P2. 02D = P1.01Dó p3l2 +p2pl2 = 1 l1 (1)22(với l2 = AD, l1 = EB)- Vì thước thẳng đồng chất tiết diện đều nên trọng lượng của một phần thước tỷ lệ vớichiều dài của phần đó ta có:plp1 l1= Þ p1 = 1 ;p lll2 = (l – l1) ; P3 = 2 N =P2 l 2P.l= Þ P2 = 2PllP2Thay vào (1) ta đượcP (l - l1 ).(l - l1 ) P.l1 l1Pó Pl 2 - Pl1l + P(l 2 - 2ll1 + l12 ) = Pl12(l - l1 ) +=.22ll 2ó l1 =2l 2 22= l = .24 = 16 (cm)3l33Giá trị lớn nhất của BD là l1 = 16 cm.Lúc đó điểm D trùng với điểm E trên thước BE = BD = 16 cm*Chú ý: Nếu ta di chuyển thước từ phải sang trái sao cho điểm E trên thước cònnằm trên giá CD thì thước vẫn cân bằng cho tới khi E trùng với C thì đến giới hạncân bằng E lệch ra ngoài CD về phía trái thì thước sẽ quay quanh trục C sang trái.Vậy giá trị nhỏ nhất của BD khi C trùng đến E là BE = BCMà BC = BD + DC => BD = BC – DC = 16 – 4 = 12 (cm)Bài 2:Một thanh thẳng đồng chất tiết diện đều có trọng lượng P = 100 N, chiềudài AB = 100 cm, được đặt cân bằng trên hai giá đỡ ở A và C. Điểm C cách tâm Ocủa thước một đoạn OC = xa) Tìm công thức tính áp lực của thước lên giá đỡ ở C theo xb) Tìm vị trí của C để áp lực ở đó có giá trị cực đại, cực tiểuHướng dẫn:a/.Trọng lượng p của thanh đặt tại trọng tâm Olà trung điểm của thanh tác dụng lên hai giá đỡVì thanh đồng chất tiết diện đều nên ta có:COAA và B hai áp lực P1 và P2.và P1 + P2 = P = 100 (N) => P2 =xlP1BP2PlPl+xP1 OC xxdo đó P1 = P2==P2 OA llb) P2 cực đại khi x = 0 do đó P2 = P = 100 N khi đó giá đỡ C trùng với tâm OP2 cực tiểu khi x lớn nhất x = l do đó P =P= 50 N khi giá đỡ trùng với đầu B.2Dạng 6: Đòn bẩy kết hợp cùng ròng rọc.Phương pháp:-Thường các bài tập về đòn bẩy người ta còn kết hợp đòn bẩy với các dụng cụkhác như mặt phẳng nghiêng hay ròng rọc trong trường hợp này nếu kết hợp với ròngrọc thì phải nắm nguyên tắc:-Nếu ròng rọc cố định thì chỉ có tác dụng đổi hướng kéo của lực không đượclợi về lực.-Nếu dùng ròng rọc động còn có thêm tác dụng lợi 2 lần về lực kéo và tùy thuộcvào số lượng ròng rọc và cách lắp đặt mà ta áp dụng cho phù hợp.Áp dụng: ( Đề thi HSG cấp tỉnh Gia lai Năm học 2010-2011)Bài 1: Cho hệ thống ở trạng thái cân bằng đứng yên(hình vẽ ). Biết khối lượng m2 = M = 24kg;m1 = 8kg. Ròng rọc và thanh AB có khối lượngkhông đáng kể, bỏ qua ma sát.a. Tính tỷ sốOA.OBm2AODMm1Bb. Nếu m1 giảm 2kg, để hệ cân bằng thì m2 tănghay giảm khối lượng bao nhiêu?( Đề thi HSG cấp tỉnh Gia lai Năm học 20102011)· Phân tích:- Vật m1 và vật M vắt qua ròng rọc cố địnhTlượng của M tác dụng lên đòn bẩy tại điểmTm m2ODAMP1A bị giảm đi ( PM - P1)- Lúc đó đòn bẩy còn có hai lực tác dụngBPMP2nên m1 có tác dụng kéo M lên, do đó trọnglên nó là P2 và ( PM - P1)- Áp dụng điều kiện cân bằng của đòn bẩyta giải thông thường;Hướng dẫn:- Biểu diễn đủ, đúng lực tác dụng- Hệ cân bằng Þ T = P1Theo quy tắc đòn bẩy:Þ P2 .OA = (PM - P1 )OB .ÞOA PM - P1 M - m1 2===OBP2m23- Khi m1 giảm 2kg thì m1' = m1 - 2 = 6kg- ĐVì m2' > m2 nên phải tăng m2 với lượng Dm = m2' - m2 = 3kg.32để hệ cân bằng thì m2' phải thỏa mãn: m 2' = (M - m1' ) = 27kgBài 2: Cho cơ hệ như hình vẽ.Vật M = 8kg, m2 = 20kg. thanh OA dài 50cmF Fvà có điểm tựa tại O. Bỏ qua khối lượng ròng rọc dây nối.B IOAXác định khoảng cách AB để hệ cân bằng.P3P1P2a. Vì thanh OA rất nhẹ nên bỏ qua trọng lượng của thanh. Vật P1 vắtPhân tích:qua hệ ròng rọc có tác dụng kéo đầu A cuả đòn bẩy đi lên, do đó nếu bỏ qua trọnglượng của thanh OA thì hệ chỉ còn có hai lực tác dụng là lực F kéo đầu A đi lên vàtrọng lượng P2 tác dụng tại B kéo thanh OA đi xuống .Áp dụng điều kiện cân bằngcủa đòn bẩy ta giải thông thường;b. Khi xét đến trọng lượng của thanh OA thì lúc này đòn bẩy chịu tác dụng của 3 lựctác dụng lên là lực F kéo đầu A đi lên và trọng lượng P2 tác dụng tại B kéo thanh OAđi xuống lực thứ 3 là Trọng lượng của thanh OA là P3 kéo đòn bẩyđi xuống. Lúc này áp dụng hệ đòn bẩy có nhiều lực tác dụng như đã nêu ở dạng 3Bài giải:F Fa) Khi P3 = 0 thì điều kiện cân bằng của thanh OA là:2F.OA = P2.OB mà F = P1® 2P1.OA = P2.OB hay 2m1.OA = m2.OBVậy OB =2m1.OAthay số được OB = 40 (cm )m2B IOAP3P1Suy ra AB = 10cmb) xét đến trọng lượng của thanh OA bằng 50N.Gọi I là trung điểm OA. Điều kiện của cân bằng của thanh OA là:P22F.OA = P2.OB + P3.OI mà F = P1Þ 2P1.OA = P2.OB + P3.OIhay : 2m1.OA = m2.OB + m3.OIthay số ta được: OB = 33,75cmtính được AB = 16,25cm.C/ TÀI LIỆU THAM KHẢOBồi dưỡng và nâng cao vật lý 8- Nhà xuất bản Quốc gia TP Hồ Chí Minh , Tác giả: Phan Hoàng VănVật lý nâng cao 8- Nhà xuất bản Hải Phòng, Tác giả:TS.Lê Thanh Hoạch – Nguyễn Cảnh HòeChuyên đề Bồi dưỡng Vật lý 8- Nhà xuất bản Đà Nẵng , Tác giả: Nguyễn Đình ĐoànChuyên đề Bồi dưỡng Vật lý 8- Nhà xuất bản Quốc gia TP Hồ Chí Minh , Tác giả: Trần Tú TàiTrên đây là những nội dung của chuyên đề mà bản thân tôi mới xây dựng để chao đổicùng đồng nghiệp, trao đổi cùng HS. Những dạng bài nêu ra là những ví dụ cơ bảncho học sinh khá, giỏi.Trong khi giải bài tập thì có nhiều tình huống, dạng bài phức tạp hơn, cần phảivận dụng sáng tạo, tổng hợp kiến thức kết hợp giữa Toán và Vật lý một cách nhuầnnhuyễn cho từng bài cụ thể thì mới đạt được kết quả cao.Do khả năng, kinh nghiệm và thời gian còn nhiều hạn chế nên chuyên đề chưanêu ra hết các dạng bài, đặc biệt là phương pháp giải . Rất mong nhận được sự góp ýchân thành của các thầy cô để chuyên đề được hoàn thiện hơn.Tôi xin chân thành cảm ơn!Kim Đồng, ngày 09 tháng 11 năm 2015Người viếtNguyễn Đức Toàn
Tài liệu liên quan
- Bài tập nâng cao dành cho học sinh kha giỏi lớp 7 tiết 1 1
- 8
- 2
- 17
- chuyên đề phương pháp giải bài tập về ancol phenol
- 6
- 4
- 220
- Áp dụng một số kinh nghiệm phân loại và giải bài tập về muối amoni cho học sinh THPT
- 22
- 878
- 0
- Rèn luyện kỹ năng giải bài tập về tiếp tuyến cho học sinh THPT
- 24
- 771
- 0
- Bài tập về nhà dành cho học sinh khá giỏi lớp 4( Toàn )
- 1
- 775
- 3
- Bài tập về nhà dành cho học sinh giỏi khối 4( Toàn )
- 1
- 469
- 1
- Bài tập về nhà dành cho học sinh giỏi khối 4 ( Toàn )
- 1
- 538
- 0
- chuyên đề phân dạng giải bài tập về đòn bẩy cho học sinh khá giỏi
- 17
- 7
- 5
- Rèn luyện kỹ năng chứng minh các bài toán về đường tròn cho học sinh khá giỏi lớp 9 – trung học cơ sở
- 12
- 951
- 0
- Vận dụng một số kĩ thuật dạy học tích cực vào tổ chức dạy học các dạng bài tập về từ loại cho học sinh lớp 4
- 87
- 659
- 1
Tài liệu bạn tìm kiếm đã sẵn sàng tải về
(295.16 KB - 17 trang) - chuyên đề phân dạng giải bài tập về đòn bẩy cho học sinh khá giỏi Tải bản đầy đủ ngay ×Từ khóa » Bài Tập Về đòn Bẩy Lớp 6
-
Bài Tập Vật Lý Lớp 6 Bài 15: Đòn Bẩy
-
Giải Bài Tập SBT Vật Lý Lớp 6 Bài 15: Đòn Bẩy
-
Cách Giải Bài Tập Về Đòn Bẩy Cực Hay
-
Bài Tập Đòn Bẩy Môn Vật Lý Lớp 6 Có đáp án - Ôn Luyện
-
Chuyên đề Đòn Bẩy Và Phương Pháp Giải - Thư Viện Đề Thi
-
Câu Hỏi Trắc Nghiệm Vật Lý 6 Bài 15: Đòn Bẩy (Có đáp án)
-
Giải Vở Bài Tập Vật Lí 6 - Bài 15: Đòn Bẩy
-
Phương Pháp Và Bài Tập Tổng Hợp Về Đòn Bẩy Môn Vật Lý 6 Năm 2021
-
Bài 15 – Đòn Bẩy – Bài Tập Vật Lý 6
-
Vật Lý 6 Bài 15: Đòn Bẩy
-
Vật Lý 6 Bài 15: Đòn Bẩy
-
Lý Thuyết Bài 15: Đòn Bẩy - Chương I Vật Lý Lớp 6 - HocTapHay
-
Lý Thuyết đòn Bẩy - Vật Lý - Tìm đáp án, Giải Bài Tập, để Học Tốt