Công Nghệ Fenton ứng Dụng Trong Xử Lý Nước Thải

1. QUÁ TRÌNH FENTON TRONG XỬ LÝ NƯỚC THẢI LÀ GÌ?

Quá trình sản xuất ngày một phát triển, kèm theo đó lượng nước thải sinh ra càng ngày càng nhiều, nồng độ các chất ô nhiễm ngày càng gia tăng. Việc ứng dụng ngày càng cao các công nghệ sản xuất mới, sử dụng các hóa chất mới có hiệu quả cao, đã làm nồng độ ô nhiễm trong nước thải phức tạp thêm, gia tăng các chất bẩn khó xử lý đặc biệt là các chất hữu cơ khó phân hủy sinh học.

Chạy Fenton nước thải dệt nhuôm

Các phương pháp xử lý nước thải phổ biến như hiện nay bao gồm xử lý hóa lý, xử lý sinh học…, có hiệu quả cao trong việc làm giảm nồng độ các chất bẩn như cặn lơ lửng, các chất hữu cơ dễ phân hủy sinh học. Tuy nhiên đối với các chất hữu cơ khó phân hủy sinh học các các công nghệ trên chưa đảm bảo được hiệu quả xử lý. Giải pháp oxy hóa các chất khó phân hủy sinh học được tính đến. Trong xử lý nước thải, nó được đặt tên là oxy hóa bậc cao (AOPs- Advanced Oxidation Processes). Giải pháp này đòi hỏi tạo ra một chất trung gian có hoạt tính cao, có khả năng oxy hóa hiệu quả các chất hữu cơ khó phân hủy sinh học, trong xử lý nước thải đó là các gốc hydroxyl tự do ( *OH). Trong việc áp dụng giải pháp này (AOPs), quá trình Fenton và các quá trình kiểu Fentom (Fenton – like processes) được cho là giải pháp có hiệu quả cao. Công trình nghiên cứu này được J.H. Fenton công bố vào năm 1894 trong tạp chí hội hóa học ở Mỹ. Quá trình này dùng tác nhân là tổ hợp H2O2 và muối sắt Fe2+ làm tác nhân oxy hóa, thực tế đã chứng minh hiệu quả xử lý và kinh tế của phương pháp này khá cao. Nhược điểm của nó là, việc oxy hóa có thể dẫn tới khoáng hóa hoàn toàn các chất hữu cơ thành CO2, nước, các ion vô cơ và do vậy phải sử dụng nhiều hóa chất sau xử lý này làm cho chi phí xử lý cao. Vì vậy, trong các trường hợp chỉ nên áp dụng quá trình Fenton để phân hủy từng phần, chuyển các chất khó phân hủy sinh học thành có khả năng phân hủy sinh học rồi tiếp tục dùng các quá trình xử lý sinh học tiếp sau. Sử dụng phản ứng oxy hóa để phá hủy các chất độc hại là một phương pháp xử lý ô nhiễm có hiệu quả. Từ đầu những năm 70 người ta đã đưa ra một quy trình áp dụng nguyên tắc phản ứng Fenton để xử lý ô nhiễm nước thải mà theo đó hyđro peroxyt phản ứng với sắt (II) sunfat sẽ tạo ra gốc tự do hyđroxyl có khả năng phá hủy các chất hữu cơ. Trong một số trường hợp nếu phản ứng xảy ra hoàn toàn, một số chất hữu cơ sẽ chuyển hóa thành CO2 và nước. Hiện nay các quy định bảo vệ môi trường càng trở nên khắt khe hơn vì vậy phương pháp Fenton lại càng được chú trọng. Dùng cho phản ứng Fenton cần có xúc tác và chất oxy hóa. Chất xúc tác có thể là muối sắt hai hoặc sắt ba còn chất oxy hóa là hyđro peroxit. Phản ứng tạo ra gốc tự do hyđroxyl diễn ra như sau: Fe2+ + H2O2 > Fe3+ + OH- + OH. Fe3+ + H2O2 -> Fe2+ + H+ + HOO. 2H2O2 > H2O + OH. + HOO. Phản ứng của gốc hydroxyl :Gốc hydroxyl là chất oxy hóa mạnh, chỉ sau Fluorine. Phản ứng hóa học của gốc hydroxyl trong nước có 4 dạng : (1) Dạng cộng thêm : Gốc hydroxyl thêm vào một hợp chất chưa bão hòa, aliphatic (béo) hay aromatic (thơm) để tạo nên một sản phẩm có gốc tự do . *OH + C6H6 -> *(OH)C6H6 (2) Dạng loại hydro : Phản ứng tạo ra một gốc hữu cơ tự do và nước *OH + CH3OH -> *CH2OH + H2O (3) Dạng chuyển đổi electron : Tạo ra những ion ở trạng thái hóa trị cao hơn (hoặc một nguyên tử, một gốc tự do nếu ion mang điện tích 1- bị oxy hóa ) : *OH + [Fe(CN)6]4- -> [Fe(CN)6]3- + OH- (4) Dạng tương tác giữa các gốc : 2 gốc hydroxyl phản ứng với nhau hay 1 gốc hydroxyl phản ứng với một gốc khác để tạo nên một sản phẩm bền vững hơn: *OH + *OH -> H2O2 Trong việc ứng dụng phản ứng Fenton xử lý nước thải, những điều kiện của phản ứng được điều chỉnh để ưu tiên xảy ra theo 2 cơ chế đầu. Ngoài ra, phản ứng oxy hóa còn được xúc tác bởi một lượng nhỏ mangan dưới dạng muối sulfate. Các nghiên cứu trước đây cho thấy, sự hiện diện của mangan làm tăng hiệu quả phản ứng nhưng chỉ với một tỉ lệ mangan rất thấp (nếu nhiều mangan quá cũng không tốt). Mangan làm tăng tác dụng hấp phụ của bông hydroxit và vai trò của mangan chủ yếu thể hiện khi pH được nâng lên khoảng 7-8.

2. QUÁ TRÌNH FENTON TRONG XỬ LÝ NƯỚC THẢI

Thông thường qui trình oxi hóa Fenton đồng thể gồm 4 giai đoạn:

Giai đoạn 1: Điều chỉnh pH phù hợp: Trong các phản ứng Fenton, độ pH ảnh hưởng tới tốc độ phản ứng và nồng độ Fe2+, từ đó ảnh hưởng lớn đến tốc độ phản ứng và hiệu quả phân hủy các chất hữu cơ, pH thích hợp cho quá trình là từ 2 – 4, tối ưu nhất là ở mức 2,8. Đã có nhiều công trình nghiên cứu nhằm giảm thiểu khó khăn khi đưa pH về mức thấp rồi sau đó lại nâng pH lên mức trung tính để tách khử Fe, H2O2 dư. Nếu ta dùng các chất xúc tác khác như quặng sắt Goethite (a-FeOOH), cát có chứa sắt, hoặc sắt trên chất mang Fe/SiO2, Fe/TiO2, Fe/than hoạt tính, Fe/Zeolit… thì quá trình này gọi là Fenton dị thể, pH thích hợp ở trường hợp này theo nghiên cứu cao hơn đồng thể, khoảng từ 5 – 9.

Giai đoạn 2: Phản ứng oxi hóa: Trong giai đoạn phản ứng oxi hóa xảy ra sự hình thành gốc *OH hoạt tính và phản ứng oxi hóa chất hữu cơ. Cơ chế hình thành gốc *OH hiện nay chưa thống nhất, theo Fenton thì sẻ có phản ứng: Fe2+ + H2O2 ----> Fe3+ + *OH + OH­–. Gốc *OH sau khi hình thành sẽ tham gia vào phản ứng ôxi hóa các hợp chất hữu cơ có trong nước cần xử lý, chuyển chất hữu cơ từ dạng cao phân thành các chất hữu cơ có khối lượng phân tử thấp. CHC (cao phân tử) + *HO ------> CHC (thấp phân tử) + CO2 + H2O + OH- Giai đoạn 3: Trung hòa và keo tụ: Sau khi xảy ra quá trình oxi hóa cần nâng pH dung dịch lên >7 để thực hiện kết tủa Fe3+ mới hình thành: Fe3+ + 3OH- -----> Fe(OH)3. Kết tủa Fe(OH)3 mới hình thành sẽ thực hiện các cơ chế keo tụ, đông tụ, hấp phụ một phần các chất hữu cơ chủ yếu là các chất hữu cơ cao phân tử Giai đoạn 4: Quá trình lắng: Các bông keo sau khi hình thành sẽ lắng xuống khiến làm giảm COD, màu, mùi trong nước thải. Sau quá trình lắng các chất hữu cơ còn lại (nếu có) trong nước thải chủ yếu là các hợp chất hữu cơ có khối lượng phân tử thấp sẽ được xử lý bổ sung bằng phương pháp sinh học hoặc bằng các phương pháp khác.

3. CÁC YẾU TỐ ẢNH HƯỞNG ĐẾN PHẢN ỨNG FENTON :

Nồng độ sắt: Nếu không có sắt, sẽ không có sự hình thành gốc hydroxyl. Chẳng hạn như, H2O2 được thêm vào nước thải có tính phenol (nồng độ phenol không giảm vì phản ứng phá hủy phenol cần xúc tác sắt). Khi nồng độ sắt tăng, sự loại trừ phenol tăng đến điểm mà tại đó, nếu có thêm sắt vào nữa thì hiệu quả cũng không tăng. Khoảng liều lượng tối ưu cho xúc tác sắt thay đổi tùy theo loại nước thải và là đặc trưng của phản ứng Fenton. Liều lượng sắt cũng có thể diễn tả dưới dạng liều lượng H2O2 . Khoảng điển hình là 1 phần Fe trên 1-10 phần H2O2.

Ảnh hưởng của dạng sắt: Đối với hầu hết các ứng dụng, muối Fe2+ hay Fe3+ đều có thể dùng xúc tác phản ứng. Phản ứng bắt đầu xúc tác nhanh chóng nếu H2O2 nhiều. Tuy nhiên, nếu lượng hệ chất Fenton thấp (dưới 10-25 mg/l H2O2), các nghiên cứu cho thấy sắt II được ưa chuộng hơn. Mặt khác, muối sắt chloride hay sulfat đều có thể được sử dụng. Cũng có khả năng tái tuần hoàn sắt sau phản ứng bằng cách tăng pH, tách riêng các bông sắt và tái axit hóa bùn sắt.

Nồng độ H2O2 : Các gốc hydroxyl oxy hóa chất hữu cơ mà không phân biệt. Ví dụ về một chuỗi phản ứng : Chất nền -> A -> B -> C -> D -> CO2 Với A, B, C, D đại diện cho các chất trung gian bị oxy hóa. Mỗi sự chuyển đổi trong chuỗi này có tốc độ phản ứng riêng, và đôi khi chất trung gian tạo ra lại là một chất ô nhiễm không mong đợi. Những chất này đòi hỏi phải đủ lượng H2O2 để đẩy phản ứng lên trên điểm đó. Điều này có thể quan sát được khi tiền xử lý một nước thải hữu cơ phức tạp để giảm tính độc. Khi liều lượng H2O2 bắt đầu tăng dần, sự khử COD có thể xảy ra với ít hoặc không có sự thay đổi độc tính cho đến khi đạt một ngưỡng mà trên ngưỡng đó, việc thêm H2O2 sẽ làm giảm nhanh chóng độc tính nước thải. Nhiệt độ: Tốc độ phản ứng Fenton tăng cùng với sự gia tăng nhiệt độ, nhất là khi nhiệt độ nhỏ hơn 200C. Tuy nhiên, khi nhiệt độ lớn trên khoảng 40-500C, hiệu suất sử dụng của H2O2 giảm do sự phân hủy H2O2 tăng (tạo thành oxy và nước). Hầu hết các ứng dụng của phản ứng Fenton xảy ra ở nhiệt độ 20-400C. Khi xử lý chất thải ô nhiễm nặng, việc thêm H2O2 phải tiến hành tuần tự có kiểm soát để điều chỉnh sự gia tăng nhiệt độ (nhất là khi lượng H2O2¬ lớn hơn 10-20g/l). Điều hòa nhiệt độ quan trọng còn bởi lý do an toàn. pH: pH tối ưu của phản ứng Fenton trong khoảng 3-6 (4-4,5 :tốt). Khi pH tăng cao trên 6, hiệu suất phản ứng sụt giảm do sự chuyển đổi của sắt từ ion sắt II thành dạng keo hydroxit sắt III. Dạng sắt III hydroxide xúc tác phân hủy H2O2 ¬thành oxy và nước mà không tạo nên gốc hydroxyl. Khi pH nhỏ hơn 3, hiệu suất phản ứng cũng sụt giảm nhưng đỡ hơn. Mặt khác, pH còn liên hệ với tiến triển của phản ứng. Ví dụ như pH nước thải ban đầu là 6. Trước tiên, pH giảm do thêm xúc tác FeSO4 . Sau đó, pH giảm nhiều hơn khi thêm H2O2¬, sự giảm cứ tiếp tục dần dần đến một mức nào đó (tùy vào nồng độ xúc tác). Người ta cho là sự giảm này do quá trình phân hủy các chất hữu cơ thành axit hữu cơ. Sự thay đổi pH thường xuyên được giám sát để đảm bảo rằng phản ứng đang phát triển theo đúng tiến độ. Nếu không xảy ra sự giảm pH, điều đó có thể có nghĩa là phản ứng bị cản trở. Những dòng nước thải đậm đặc (10g/l COD) cần oxy hóa nhiều bậc và điều chỉnh lại pH sau mỗi giai đoạn để ngăn ngừa pH thấp làm cản trở phản ứng. Thời gian phản ứng: Thời gian cần thiết để hoàn thành một phản ứng Fenton phụ thuộc vào nhiều yếu tố trên, đáng chú ý nhất là liều lượng xúc tác và mức ô nhiễm của nước thải. Đối với sự oxy hóa phenol đơn giản (<250 mg/l), thời gian phản ứng điển hình là 30-60 phút. Đối với các dòng thải phức tạp hoặc đậm đặc hơn, phản ứng có thể mất vài giờ. Trong trường hợp này, thực hiện phản ứng theo từng bậc (nhiều bước), thêm cả vừa sắt và H2O2 sẽ hiệu quả hơn, an toàn hơn là cho tất cả hóa chất vào ngay từ đầu. Việc xác định điểm kết thúc phản ứng cũng khá khó khăn. Sự hiện diện của dư lượng H2O2 sẽ cản trở quá trình phân tích nước thải. Dư lượng H2O2 có thể bị khử bằng cách tăng pH đến 7-10, hoặc trung hòa với dung dịch bisulfite. Thường thì việc quan sát sự thay đổi màu cũng có thể đánh giá tiến trình phản ứng.

4. CÁC ỨNG DỤNG PHẢN ỨNG FENTON TRONG XỬ LÝ Ô NHIỄM

Hiện nay trên thế giới đã có nhiều công trình nghiên cứu, ứng dụng H2O2 làm chất oxy hóa kết hợp với các chất xúc tác vô cơ như: CuO, ZnO, Al203, Ni2O3, MnO, FeSO4… cho xử lý nước thải. Riêng hệ phản ứng kết hợp giữa H2O2 và FeSO4 đã được áp dụng phổ biến cho xử lý nhiều loại nước thải khác nhau như: nước thải dệt nhuộm, nước thải giấy, nước thải lọc dầu, thực phẩm, các ngành công nghiệp hóa chất độc hại ...

Các ứng dụng khác trong lĩnh vực môi trường của H2O2 đã được thế giới áp dụng gồm có :

  • Khử mùi : oxy hóa H2S, mercaptan, amine và aldehyde. H2O2 có thể đưa trực tiếp vào nước thải có mùi hoặc đưa vào tháp phun ướt để khử mùi từ dòng khí.

  • Kiểm soát sự ăn mòn : phân hủy dư lượng chlorine và hợp chất lưu huỳnh (thiosulfates, sulfites và sulfides) tạo ra các axit ăn mòn khi ngưng tụ trong thiết bị và bị oxy hóa bởi không khí.

  • Khử BOD, COD : oxy hóa các chất ô nhiễm gây ra BOD, COD, đối với những chất khó phân hủy có thể cần xúc tác.

  • Oxy hóa chất vô cơ : oxy hóa cyanide, NOx, SOx, nitrites, hydrazine, carbonyl sulfide, và các hợp chất lưu huỳnh (phần khử mùi).

  • Oxy hóa chất hữu cơ : thủy phân formaldehyde, cacbon disulfide (CS2), carbohydrat, photpho hữu cơ, các hợp chất nitơ, phenol, thuốc bảo vệ thực vật…

  • Oxy hóa kim loại : oxy hóa sắt II, mangan, arsenic, selenium…để cải thiện khả năng hấp phụ , lọc hay kết tủa từ các quá trình xử lý nước và nước thải.

  • Khử độc, cải thiện khả năng phân hủy sinh học : với xúc tác H2O2 phân hủy các chất hữu cơ phức tạp thành đơn giản hơn, ít độc hơn, dễ phân hủy sinh học hơn.

  • Khử trùng.

  • Giải phóng các bọt khí nhỏ phân tán, nâng cao hiệu quả khử loại các váng dầu mỡ trong hệ thống tuyển nổi.

  • Cung cấp nguồn DO bổ sung tại chỗ cho quá trình xử lý sinh học, cải thiện hiệu quả đốt cháy và làm giảm nhiệt độ vận hành trong lò đốt... Các bài viết khác: XỬ LÝ NƯỚC THẢI HÓA LÝ BẰNG GIẢI PHÁP PEROZON THIẾT BỊ XỬ LÝ NƯỚC THẢI HIẾU KHÍ ĐƠN GIẢN

Từ khóa » Hiệu Suất Phản ứng Fenton