Công Thức Biến đổi Tích Thành Tổng
Có thể bạn quan tâm
Công thức biến đổi tích thành tổng là tài liệu vô cùng hữu ích mà Download.vn muốn giới thiệu đến các bạn lớp 12 cùng tham khảo.
Công thức biến đổi tích thành tổng bao gồm công thức biến đổi, cách ghi nhớ và các ví dụ minh họa có đáp án kèm theo. Qua công thức biến tích thành tổng giúp các bạn học sinh lớp 12 có thêm nhiều tư liệu tham khảo, trau dồi kiến thức để giải nhanh được các bài tập lượng giác. Ngoài ra các bạn xem thêm: 6 Công thức tính lãi suất, Cách tính số phức liên hợp.
Công thức biến đổi tích thành tổng
1. Công thức biến đổi tích thành tổng
\(\begin{aligned} &\cos a \cdot \cos b=\frac{1}{2}[\cos (a+b)+\cos (a-b)] \\ &\sin a \cdot \sin b=-\frac{1}{2}[\cos (a+b)-\cos (a-b)] \\ &\sin a \cdot \cos b=\frac{1}{2}[\sin (a+b)+\sin (a-b)] \end{aligned}\)
2. Cách ghi nhớ Công thức biến đổi tích thành tổng
Tính sin tổng ta lập tổng sin cô
Tính cô tổng lập ta hiệu đôi cô đôi chàng
còn tính tan tử + đôi tan (hay là: tan tổng lập tổng 2 tan)
1 trừ tan tích mẫu mang thương rầu
Nếu gặp hiệu ta chớ lo âu,
Đổi trừ thành cộng ghi sâu trong lòng
Một cách nhớ khác của câu Tang mình + với tang ta, bằng sin 2 đứa trên cos ta cos mình… là
tangx + tangy: tình mình cộng lại tình ta, sinh ra hai đứa con mình con ta
3. Ví dụ công thức biến đổi tích thành tổng
Để làm bài tập dạng này, ta phải nắm vững công thức biến đổi tích thành tổng và áp dụng để biến đổi.
Ví dụ 1: Tính giá trị của biểu thức \(\mathrm{A}=\sin \frac{13 \pi}{24} \sin \frac{5 \pi}{24}\)
Hướng dẫn giải:
\(\begin{aligned} \mathrm{A} &=\sin \frac{13 \pi}{24} \sin \frac{5 \pi}{24} \\ &=\frac{1}{2}\left[\cos \left(\frac{13 \pi}{24}-\frac{5 \pi}{24}\right)-\cos \left(\frac{13 \pi}{24}+\frac{5 \pi}{24}\right)\right] \\ &=\frac{1}{2}\left(\cos \frac{\pi}{3}-\cos \frac{3 \pi}{4}\right) \\ &=\frac{1}{2}\left(\frac{1}{2}-\left(-\frac{\sqrt{2}}{2}\right)\right)=\frac{1+\sqrt{2}}{4} \end{aligned}\)
Ví dụ 2: Biến đổi thành tổng: \(A=2 \sin x \cdot \sin 2 x \cdot \sin 3 x\)
Hướng dẫn giải:\(\begin{aligned} \mathrm{A} &=2 \sin x \cdot \sin 2 x \cdot \sin 3 x \\ &=2 \cdot \frac{1}{2}(\cos (x-2 x)-\cos (x+2 x)) \cdot \sin 3 x \\ &=(\cos (-x)-\cos 3 x) \cdot \sin 3 x \\ &=\cos x \cdot \sin 3 x-\cos 3 x \cdot \sin 3 x \\ &=\frac{1}{2}(\sin (3 x-x)+\sin (3 x+x))-\frac{1}{2} \sin 6 x \\ &=\frac{1}{2} \sin 2 x+\frac{1}{2} \sin 4 x-\frac{1}{2} \sin 6 x \end{aligned}\)
Ví dụ 3: Cho \(\cos 2 \alpha=\frac{\sqrt{5}}{5}, \alpha \in\left[-\frac{\pi}{2} ; 0\right]\) . Tính \(\mathrm{P}=\sin a \cdot \cos 3 \mathrm{a}+\cos ^{2} \mathrm{a}\)
Hướng dẫn giải:
Ta có:
\(\begin{aligned} &\sin ^{2} 2 \alpha=1-\cos ^{2} 2 \alpha=\frac{4}{5} \Rightarrow \sin 2 \alpha=\pm \frac{2}{\sqrt{5}} \\ &\text { Vì } \alpha \in\left[-\frac{\pi}{2} ; 0\right] \Rightarrow 2 \alpha \in[-\pi ; 0] \text { nên } \sin 2 \alpha<0 \end{aligned}\)
Do đó \(\sin 2 \alpha=-\frac{2}{\sqrt{5}}\)
Ta có:
\(\begin{aligned} \mathrm{P} &=\sin \alpha \cos 3 \alpha+\cos ^{2} \alpha \\ &=\frac{1}{2}(\sin (\alpha-3 \alpha)+\sin (\alpha+3 \alpha))+\frac{1+\cos 2 \alpha}{2} \\ &=\frac{1}{2}(\sin (-2 \alpha)+\sin 4 \alpha)+\frac{1+\cos 2 \alpha}{2} \\ &=\frac{1}{2}(-\sin 2 \alpha+2 \sin 2 \alpha \cos 2 \alpha)+\frac{1+\cos 2 \alpha}{2} \\ &=\frac{1}{2}\left(-\left(-\frac{2}{\sqrt{5}}\right)+2\left(-\frac{2}{\sqrt{5}}\right) \cdot \frac{\sqrt{5}}{5}\right)+\frac{1+\frac{\sqrt{5}}{5}}{2} \end{aligned}\)
Ví dụ 4: Rút gọn biểu thức lượng giác sau:
\(\begin{aligned} &\mathrm{A}=4 \sin \frac{\mathrm{x}}{3} \cdot \sin \left(\frac{\mathrm{x}+\pi}{3}\right) \cdot \sin \left(\frac{\mathrm{x}-\pi}{3}\right) \\ &\mathrm{B}=4 \cos \frac{\mathrm{x}}{3} \cdot \cos \left(\frac{\mathrm{x}+\pi}{3}\right) \cdot \cos \left(\frac{\mathrm{x}-\pi}{3}\right) \end{aligned}\)
Hướng dẫn giải:
\(\begin{aligned} \mathrm{A} &=4 \sin \frac{x}{3} \cdot \sin \left(\frac{x+\pi}{3}\right) \cdot \sin \left(\frac{x-\pi}{3}\right) \\ &=4 \cdot \sin \frac{x}{3} \cdot \frac{1}{2}\left[\cos \left(\frac{x+\pi}{3}-\frac{x-\pi}{3}\right)-\cos \left(\frac{x+\pi}{3}+\frac{x-\pi}{3}\right)\right] \\ &=2 \sin \frac{x}{3}\left(\cos \frac{2 \pi}{3}-\cos \frac{2 x}{3}\right) \\ &=2 \sin \frac{x}{3}\left(-\frac{1}{2}-\cos \frac{2 x}{3}\right) \\ &=-\frac{1}{2} \cdot 2 \sin \frac{x}{3}-2 \sin \frac{x}{3} \cos \frac{2 x}{3} \\ &=-\sin \frac{x}{3}-2 \cdot \frac{1}{2}\left(\sin \left(\frac{x}{3}-\frac{2 x}{3}\right)+\sin \left(\frac{x}{3}+\frac{2 x}{3}\right)\right) \end{aligned}\)
Từ khóa » Bài Tập Công Thức Biến đổi Tổng Thành Tích
-
Cách Giải Bài Tập Công Thức Biến đổi Tổng Thành Tích Cực Hay, Chi Tiết
-
Cách Giải Bài Tập Công Thức Biến đổi Tích Thành Tổng Cực Hay, Chi Tiết
-
Bài Tập Công Thức Biến đổi Tổng Thành Tích Lớp 10
-
Cách Giải Bài Tập Công Thức Biến đổi Tổng Thành Tích Cực Hay, Chi Tiết
-
Bài Tập Công Thức Biến đổi Tổng Thành Tích - 123doc
-
Công Thức Biến đổi Tổng Thành Tích
-
Công Thức Biến đổi Tích Thành Tổng ... - .vn
-
Các Công Thức Biến Đổi Tích Thành Tổng, Tổng Thành ...
-
Công Thức Biến đổi Tích Thành Tổng - Gia Sư Tâm Tài Đức
-
Ví Dụ Về Công Thức Biến đổi Tổng Thành Tích - Xây Nhà
-
Bài Tập Lượng Giác Lớp 10 Cơ Bản Có Đáp Án Chi Tiết. - Kiến Guru
-
Công Thức Biến đổi Tích Thành Tổng, Tổng Thành Tích Trong ... - Bierelarue