Công Thức, Cách Tính độ Dài đường Trung Tuyến Cực Hay, Chi Tiết

Công thức, cách tính độ dài đường trung tuyến (cực hay, chi tiết)
  • Siêu sale sách Toán - Văn - Anh Vietjack 25-11 trên Shopee mall
Trang trước Trang sau

Bài viết Công thức, cách tính độ dài đường trung tuyến với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Công thức, cách tính độ dài đường trung tuyến.

  • Cách giải bài tập tính độ dài đường trung tuyến
  • Ví dụ minh họa bài tập tính độ dài đường trung tuyến
  • Bài tập tự luyện tính độ dài đường trung tuyến

Công thức, cách tính độ dài đường trung tuyến (cực hay, chi tiết)

A. Phương pháp giải

Áp dụng công thức tính độ dài đường trung tuyến:

Công thức, cách tính độ dài đường trung tuyến (cực hay, chi tiết)

Cho tam giác ABC có các cạnh BC = a, CA = b và AB = c. Gọi ma; mb; mc là độ dài các đường trung tuyến lần lượt vẽ từ các đỉnh A, B và C của tam giác. Khi đó

Công thức, cách tính độ dài đường trung tuyến (cực hay, chi tiết)

B. Ví dụ minh họa

Ví dụ 1: Cho tam giác ABC có BC = a = 10 cm, CA = b = 8 cm, AB = c = 7 cm. Tính độ dài các đường trung tuyến của tam giác ABC.

Hướng dẫn giải:

Gọi độ dài trung tuyến từ các đỉnh A, B, C của tam giác ABC lần lượt là ma; mb; mc.

Áp dụng công thức trung tuyến ta có:

Công thức, cách tính độ dài đường trung tuyến (cực hay, chi tiết)

Vì độ dài các đường trung tuyến (là độ dài đoạn thẳng) nên nó luôn dương, do đó:

Công thức, cách tính độ dài đường trung tuyến (cực hay, chi tiết)

Ví dụ 2: Cho tam giác ABC, có BC = a, CA = b và AB = c. Chứng minh rằng nếu b2 + c2 = 5a2 thì hai trung tuyến kẻ từ B và C của tam giác vuông góc với nhau.

Hướng dẫn giải:

Công thức, cách tính độ dài đường trung tuyến (cực hay, chi tiết)

Gọi D và E lần lượt là trung điểm của AB và AC, G là trọng tâm tam giác ABC.

Đặt BE = mb, CD = mc

Áp dụng công thức trung tuyến trong tam giác ABC ta có:

Công thức, cách tính độ dài đường trung tuyến (cực hay, chi tiết)

Vậy b2 + c2 = 5a2 thì hai trung tuyến kẻ từ B và C của tam giác vuông góc với nhau. (đpcm)

Ví dụ 3: Cho tam giác ABC có AB = 3, BC = 5 và độ dài đường trung tuyến Công thức, cách tính độ dài đường trung tuyến (cực hay, chi tiết). Độ dài AC là:

Công thức, cách tính độ dài đường trung tuyến (cực hay, chi tiết)

Hướng dẫn giải:

Công thức, cách tính độ dài đường trung tuyến (cực hay, chi tiết)

BM là trung tuyến của tam giác ABC, áp dụng công thức trung tuyến ta có:

Công thức, cách tính độ dài đường trung tuyến (cực hay, chi tiết)

Đáp án B

Ví dụ 4: Tam giác ABC có BC = 6, AC = Công thức, cách tính độ dài đường trung tuyến (cực hay, chi tiết), AB = 2. M là một điểm trên cạnh BC sao cho BM = 3. Giá trị của AM là?

Công thức, cách tính độ dài đường trung tuyến (cực hay, chi tiết)

Hướng dẫn giải:

Công thức, cách tính độ dài đường trung tuyến (cực hay, chi tiết)

Công thức, cách tính độ dài đường trung tuyến (cực hay, chi tiết)

Mà M thuộc BC.

Do đó M là trung điểm của BC => AM là trung tuyến của tam giác ABC, áp dụng công thức trung tuyến ta có.

Công thức, cách tính độ dài đường trung tuyến (cực hay, chi tiết)

Đáp án C

Ví dụ 5: Gọi S = ma2 + mb2 + mc2 là tổng bình phương độ dài ba đường trung tuyến của tam giác ABC. Khẳng định nào sau đây là đúng? (cho BC = a, CA = b, AB = c)

Công thức, cách tính độ dài đường trung tuyến (cực hay, chi tiết)

Hướng dẫn giải:

Áp dụng công thức trung tuyến trong tam giác ABC ta có:

Công thức, cách tính độ dài đường trung tuyến (cực hay, chi tiết)

Đáp án A

C. Bài tập tự luyện

Bài 1. Tam giác ABC có AB = AC = 10 cm, BC = 12 cm. Tính độ dài đường trung tuyến AM.

Hướng dẫn giải:

Ta có tam giác ABC cân tại A, AM là trung tuyến suy ra AM là đường cao, đường phân giác của tam giác ABC nên BM = MC = 12BC = 6 cm

Áp dụng định lý Pythagore cho tam giác vuông AMC có:

AC2 = AM2 + MC2 ⇒AM=AC2-MC2 = 8 cm

Bài 2. Tính độ dài đường trung tuyến AM của tam giác ABC có góc BAC^=120°, AB = 4 cm, AC = 6 cm

Hướng dẫn giải:

Ta có BC2 = AB2 + AC2 - 2.AB.AC.cos120o

⇒BC=29

⇒AM2=AB2+AC22-BC24

⇒AM=7

Bài 3. Cho tam giác ABC vuông tại A có độ dài hai đường trung tuyến AM và BN lần lượt bằng 6 cm và 9 cm. Tính độ dài cạnh AB.

Hướng dẫn giải:

Tam giác ABC vuông tại A, AM là trung tuyến nên AM = BM = MC = 6

Suy ra BC = 12

Mặt khác:

Công thức, cách tính độ dài đường trung tuyến (cực hay, chi tiết)

Bài 4. Cho tam giác ABC cân ở A có AB = AC = 17 cm, BC= 16 cm. Kẻ trung tuyến AM.

a) Chứng minh: AM ⊥ BC;

b) Tính độ dài AM.

Hướng dẫn giải:

a. Ta có AM là đường trung tuyến tam giác ABC nên MB = MC

Mặt khác tam giác ABC là tam giác cân tại A

Suy ra AM vừa là đường trung tuyến vừa là đường cao

Vậy AM vuông góc với BC

b. Ta có

BC = 16cm nên BM = MC = 8cm

AB = AC = 17cm

Xét tam giác AMC vuông tại M

Áp dụng định lý Pythagore ta có: AC2 = AM2 + MC2 hay 172 = AM2 + 82.

Suy ra AM2 = 172 – 82 = 225.

Do đó AM = 15 cm.

Bài 5.Cho tam giác MNP cân ở M có MB = MC = 17 cm, NP= 16 cm. Kẻ trung tuyến MI.

a) Chứng minh: MI ⊥ NP;

b) Tính độ dài MI.

Hướng dẫn giải:

a) Do MI là đường trung tuyến MNP nên IP = IN.

Mặt khác tam giác MNP cân tại M.

Do đó MI vừa là đường trung tuyến vừa là đường cao hay MI ⊥ NP.

b) Ta có:

• NP = 16 cm nên NI = PI = 8 cm.

• MN = MP = 17 cm.

Xét tam giác MIP vuông tại I

Áp dụng định lý Pythagore, ta có:

• MP2 = MI2 + IP2 hay 192 = MI2 + 82

• MI2 = 172 – 82 = 225 suy ra MI = 15 cm.

Bài 6. Tam giác MNP cho biết NP = 20cm, PM = 16cm, MN = 14cm. Tính độ dài các đường trung tuyến của tam giác MNP.

Bài 7. Cho tam giác ABC có a = 6 cm, b = 8 cm, c = 10 cm. Tính độ dài các đường trung tuyến của tam giác ABC.

Bài 8. Cho tam giác ABC vuông tại B có độ dài hai đường trung tuyến BM và CN lần lượt bằng 5 cm và 7 cm. Tính độ dài cạnh BC.

Bài 9. Tính độ dài đường trung tuyến BM của tam giác ABC có góc ABC^=120°, BC = 5 cm, AB = 10 cm.

Bài 10. Cho tam giác ABC có AB = 6, BC = 10 và độ dài đường trung tuyến BM = 19. Tính độ dài AC.

Xem thêm các dạng bài tập Toán lớp 10 chọn lọc, có đáp án hay khác khác:

  • Cách chứng minh Hai vecto vuông góc (cực hay, chi tiết)
  • Tìm m để góc giữa hai vecto bằng một số cho trước cực hay (45 độ, góc nhọn, góc tù)
  • Cách giải bài tập về Định lí Cô-sin trong tam giác (cực hay, chi tiết)
  • Cách giải bài tập về Định lí Sin trong tam giác (cực hay, chi tiết)
  • Công thức, cách tính Diện tích tam giác (cực hay, chi tiết)

Lời giải bài tập lớp 10 sách mới:

  • Giải bài tập Lớp 10 Kết nối tri thức
  • Giải bài tập Lớp 10 Chân trời sáng tạo
  • Giải bài tập Lớp 10 Cánh diều
  • Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí

Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):

  • Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 10 (từ 99k )
  • Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 11 (từ 99k )
  • 30 đề DGNL Bách Khoa, DHQG Hà Nội, tp. Hồ Chí Minh 2025 (cho 2k7) (từ 119k )

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Giáo án, bài giảng powerpoint Văn, Toán, Lí, Hóa....

4.5 (243)

799,000đs

199,000 VNĐ

Đề thi, chuyên đề Cánh diều, Kết nối tri thức, Chân trời sáng tạo...

4.5 (243)

799,000đ

99,000 VNĐ

Sách luyện 30 đề thi thử THPT năm 2025 mới

4.5 (243)

199,000đ

99.000 - 149.000 VNĐ

xem tất cả

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS. Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.

Trang trước Trang sau tich-vo-huong-cua-hai-vecto-va-ung-dung.jsp Giải bài tập lớp 10 sách mới các môn học
  • Giải Tiếng Anh 10 Global Success
  • Giải Tiếng Anh 10 Friends Global
  • Giải sgk Tiếng Anh 10 iLearn Smart World
  • Giải sgk Tiếng Anh 10 Explore New Worlds
  • Lớp 10 - Kết nối tri thức
  • Soạn văn 10 (hay nhất) - KNTT
  • Soạn văn 10 (ngắn nhất) - KNTT
  • Soạn văn 10 (siêu ngắn) - KNTT
  • Giải sgk Toán 10 - KNTT
  • Giải sgk Vật lí 10 - KNTT
  • Giải sgk Hóa học 10 - KNTT
  • Giải sgk Sinh học 10 - KNTT
  • Giải sgk Địa lí 10 - KNTT
  • Giải sgk Lịch sử 10 - KNTT
  • Giải sgk Kinh tế và Pháp luật 10 - KNTT
  • Giải sgk Tin học 10 - KNTT
  • Giải sgk Công nghệ 10 - KNTT
  • Giải sgk Hoạt động trải nghiệm 10 - KNTT
  • Giải sgk Giáo dục quốc phòng 10 - KNTT
  • Lớp 10 - Chân trời sáng tạo
  • Soạn văn 10 (hay nhất) - CTST
  • Soạn văn 10 (ngắn nhất) - CTST
  • Soạn văn 10 (siêu ngắn) - CTST
  • Giải Toán 10 - CTST
  • Giải sgk Vật lí 10 - CTST
  • Giải sgk Hóa học 10 - CTST
  • Giải sgk Sinh học 10 - CTST
  • Giải sgk Địa lí 10 - CTST
  • Giải sgk Lịch sử 10 - CTST
  • Giải sgk Kinh tế và Pháp luật 10 - CTST
  • Giải sgk Hoạt động trải nghiệm 10 - CTST
  • Lớp 10 - Cánh diều
  • Soạn văn 10 (hay nhất) - Cánh diều
  • Soạn văn 10 (ngắn nhất) - Cánh diều
  • Soạn văn 10 (siêu ngắn) - Cánh diều
  • Giải sgk Toán 10 - Cánh diều
  • Giải sgk Vật lí 10 - Cánh diều
  • Giải sgk Hóa học 10 - Cánh diều
  • Giải sgk Sinh học 10 - Cánh diều
  • Giải sgk Địa lí 10 - Cánh diều
  • Giải sgk Lịch sử 10 - Cánh diều
  • Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
  • Giải sgk Tin học 10 - Cánh diều
  • Giải sgk Công nghệ 10 - Cánh diều
  • Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
  • Giải sgk Giáo dục quốc phòng 10 - Cánh diều

Từ khóa » Tìm Trung Tuyến Am