Công Thức, Cách Tính Góc Giữa Hai Vecto Cực Hay, Chi Tiết - Toán Lớp 10

Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết)
  • Siêu sale sách Toán - Văn - Anh Vietjack 29-11 trên Shopee mall
Trang trước Trang sau

Bài viết Công thức, cách tính góc giữa hai vecto với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Công thức, cách tính góc giữa hai vecto.

  • Cách giải bài tập tính góc giữa hai vecto
  • Ví dụ minh họa bài tập tính góc giữa hai vecto
  • Bài tập tự luyện tính góc giữa hai vecto

Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết)

A. Phương pháp giải

Phương pháp 1: Sử dụng định nghĩa góc giữa hai vectơ

Định nghĩa góc giữa hai vectơ: Cho hai vectơ Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết) đều khác vectơ-không. Từ một điểm O bất kỳ, ta vẽ các vectơ Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết). Khi đó số đo của góc AOB, được gọi là số đo góc giữa hai vectơ Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết), hoặc đơn giản là góc giữa hai vectơ Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết).

Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết)

Phương pháp 2: (Áp dụng trong hệ tọa độ) Tính cos góc giữa hai vectơ, từ đó suy ra góc giữa 2 vectơ.

Sử dụng công thức sau:

Cho hai vectơ Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết). Khi đó

Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết)

Chú ý: Góc giữa hai vectơ thuộc [0°;180°]

B. Ví dụ minh họa

Ví dụ 1: Cho tam giác ABC vuông cân tại A. Tính góc giữa hai vectơ:

Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết)

Hướng dẫn giải:

Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết)

Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết)

- Nhớ lại khái niệm hai vectơ bằng nhau ở chương 1: Hai vectơ bằng nhau khi chúng cùng hướng và cùng độ dài.

- Trên tia đối của tia CB lấy D sao cho CB = CD.

Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết)

Ví dụ 2: Cho các vectơ Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết) Tính góc giữa hai vectơ Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết).

Hướng dẫn giải:

Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết)

Vậy góc giữa hai vectơ Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết) là góc α ∈ [0°;180°] thỏa mãn Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết).

Ví dụ 3: Trong mặt phẳng tọa độ Oxy, cho hai vectơ Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết). Tính góc giữa hai vectơ Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết).

A. 45°

B. 60°

C. 90°

D. 30°

Hướng dẫn giải:

Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết)

Đáp án A

Ví dụ 4: Cho hai vectơ Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết) có độ dài bằng 1 và thỏa mãn điều kiện Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết). Tính góc giữa hai vectơ Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết).

A. 60°

B. 30°

C. 120°

D. 150°

Hướng dẫn giải:

Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết)

Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết) (bình phương vô hướng bằng bình phương độ dài)

Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết)

Đáp án C

Ví dụ 5: Cho các vectơ Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết) thỏa mãn Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết). Góc giữa vectơ Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ (cực hay, chi tiết) và vectơ Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết)

A. 30°

B. 60°

C. 90°

D. 120°

Hướng dẫn giải:

Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết)

Công thức, cách tính góc giữa hai vecto (cực hay, chi tiết)

Đáp án A

C. Bài tập tự luyện

Bài 1. Tính góc giữa vecto a và vectơ c, biết vectơ c→=a→−b→ và cho các vectơ a và b thoả mãn |a| = 4, |b| = 2.

Hướng dẫn giải

Ta có: c = a – b

Nên c2 = (a – b)2 = a2 – 2ab + b2 = |a|2 – 2|a| . |b| . cos(a,b) + |b|2

Suy ra c2 = 42 – 2.4.1.cos60o + 22 = 3 hay |c| = 3.

Ta lại có: a . c = a . (a – b) = a2 – a . b hay a . c =3 

Do đó a . c = |a| . |c| . cos (a, c)

Hay 3 = 2.3. cos(a, c)

Do đó, cos(a, c) = 323=32

Vậy góc giữa 2 vectơ bằng 30o.

Bài 2. Tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc và đều có độ dài là 1. Gọi M là trung điểm của canh AB. Tính góc giữa hai vectơ OM→,  BC→.

Hướng dẫn giải

Lấy N là trung điểm của AC suy ra MN // BC.

Ta có: OM→ ,  BC→=OM→ ,  MN→=180°−OMN^

Xét tam giác OMN có OM = ON = 12; MN = 12BC = 22

Suy ra cosOMN^=12 hoặc OMN^=60°.

Do đó OM→,  BC→=120°.

Bài 3. Tính góc giữa 2 vectơ a và b, biết rằng 2 vectơ a và b có độ bài bằng 1 và thoả mãn điều kiện |3a + 2b| = 7.

Hướng dẫn giải

Ta có: 3a+2b=7 hay 3a⋅2b2 =7 nên 9a2 + 12b + 4b = 7

Vì a2 = |a|2 =1; b2 = |b|2 =1.

Nê 4 . 1 + 12ab + 9 . 1 =  7 nên 12ab = 7 – 4 – 9  = –6 hay ab = −12.

Do đó: cosa; b=a.ba.b=−12.

Vậy góc giữa 2 vectơ a và b là 120 độ.

Bài 4. Cho hình thoi ABCD có BAD^=120°. Tính góc giữa hai vectơ DC→ và AD→.

Hướng dẫn giải

Ta có AB // DC và AB = DC (vì ABCD là hình thoi)

Suy ra DC→=AD→ nên DC→,  AD→=AB→,  AD→.

Mà AB→,  AD→=BAD^=120°.

Do đó DC→,  AD→=120°.

Bài 5. Cho tứ diện ABCD có AC = BD = 2a. Gọi M, N lần lượt là trung điểm BC, AD. Biết rằng MN = a3. Tính góc giữa AC và BD.

Hướng dẫn giải

Gọi I là trung điểm của AB, ta có IM = IN = a

Áp dụng định lý của Cosin cho tam giác IMN ta có:

cosMIN^=IM2+IN2−MN22 . IM . IN = a2+a2−3a22 . a . a=−12

=> MIN^=60°.

Vậy góc giữa AC và BD bằng 60 độ.

Bài 6. Cho các vectơ a→=i→+j→  ;  b→=2i→+3j→. Tính góc giữa hai vectơ a→,b→.

Bài 7. Trong mặt phẳng tọa độ Oxy, cho hai vectơ a→=2;5;  b→=3; 7. Tính góc giữa hai vectơ a→;  b→. 

Bài 8. cho hai vectơ a→;b→ có độ dài bằng 1 và thỏa mãn điều kiện 3a→+5b→=9. Tính góc giữa hai vectơ a→;b→. 

Bài 9. Cho hình chóp S.ABCD có đáy là hình vuông cạnh a3, SA vuông góc với mặt phẳng đáy tại A, SA = a2. Tính góc giữa đường thẳng SC và mặt phẳng ABCD.

Bài 10. Cho hình chóp S.ABCD có đấy ABCD là hình bình hành với BC = 2a, SA vuông góc với mặt phẳng đáy, Góc giữa hai đường thẳng SD và BC nằm trong khoảng nào?

Xem thêm các dạng bài tập Toán lớp 10 chọn lọc, có đáp án hay khác khác:

  • Cách tính độ dài vecto, khoảng cách giữa hai điểm trong hệ tọa độ (cực hay, chi tiết)
  • Cách chứng minh Hai vecto vuông góc (cực hay, chi tiết)
  • Tìm m để góc giữa hai vecto bằng một số cho trước cực hay (45 độ, góc nhọn, góc tù)
  • Cách giải bài tập về Định lí Cô-sin trong tam giác (cực hay, chi tiết)

Lời giải bài tập lớp 10 sách mới:

  • Giải bài tập Lớp 10 Kết nối tri thức
  • Giải bài tập Lớp 10 Chân trời sáng tạo
  • Giải bài tập Lớp 10 Cánh diều
  • Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí

Tủ sách VIETJACK shopee lớp 10-11 cho học sinh và giáo viên (cả 3 bộ sách):

  • Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 10 (từ 99k )
  • Trọng tâm Toán - Văn- Anh- Lý -Hoá lớp 11 (từ 99k )
  • 30 đề DGNL Bách Khoa, DHQG Hà Nội, tp. Hồ Chí Minh 2025 (cho 2k7) (từ 119k )

ĐỀ THI, GIÁO ÁN, SÁCH LUYỆN THI DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 10

Bộ giáo án, bài giảng powerpoint, đề thi, sách dành cho giáo viên và gia sư dành cho phụ huynh tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official

Tổng đài hỗ trợ đăng ký : 084 283 45 85

Giáo án, bài giảng powerpoint Văn, Toán, Lí, Hóa....

4.5 (243)

799,000đs

199,000 VNĐ

Đề thi, chuyên đề Cánh diều, Kết nối tri thức, Chân trời sáng tạo...

4.5 (243)

799,000đ

99,000 VNĐ

Sách luyện 30 đề thi thử THPT năm 2025 mới

4.5 (243)

199,000đ

99.000 - 149.000 VNĐ

xem tất cả

Đã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS. Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:

Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.

Trang trước Trang sau tich-vo-huong-cua-hai-vecto-va-ung-dung.jsp Giải bài tập lớp 10 sách mới các môn học
  • Giải Tiếng Anh 10 Global Success
  • Giải Tiếng Anh 10 Friends Global
  • Giải sgk Tiếng Anh 10 iLearn Smart World
  • Giải sgk Tiếng Anh 10 Explore New Worlds
  • Lớp 10 - Kết nối tri thức
  • Soạn văn 10 (hay nhất) - KNTT
  • Soạn văn 10 (ngắn nhất) - KNTT
  • Soạn văn 10 (siêu ngắn) - KNTT
  • Giải sgk Toán 10 - KNTT
  • Giải sgk Vật lí 10 - KNTT
  • Giải sgk Hóa học 10 - KNTT
  • Giải sgk Sinh học 10 - KNTT
  • Giải sgk Địa lí 10 - KNTT
  • Giải sgk Lịch sử 10 - KNTT
  • Giải sgk Kinh tế và Pháp luật 10 - KNTT
  • Giải sgk Tin học 10 - KNTT
  • Giải sgk Công nghệ 10 - KNTT
  • Giải sgk Hoạt động trải nghiệm 10 - KNTT
  • Giải sgk Giáo dục quốc phòng 10 - KNTT
  • Lớp 10 - Chân trời sáng tạo
  • Soạn văn 10 (hay nhất) - CTST
  • Soạn văn 10 (ngắn nhất) - CTST
  • Soạn văn 10 (siêu ngắn) - CTST
  • Giải Toán 10 - CTST
  • Giải sgk Vật lí 10 - CTST
  • Giải sgk Hóa học 10 - CTST
  • Giải sgk Sinh học 10 - CTST
  • Giải sgk Địa lí 10 - CTST
  • Giải sgk Lịch sử 10 - CTST
  • Giải sgk Kinh tế và Pháp luật 10 - CTST
  • Giải sgk Hoạt động trải nghiệm 10 - CTST
  • Lớp 10 - Cánh diều
  • Soạn văn 10 (hay nhất) - Cánh diều
  • Soạn văn 10 (ngắn nhất) - Cánh diều
  • Soạn văn 10 (siêu ngắn) - Cánh diều
  • Giải sgk Toán 10 - Cánh diều
  • Giải sgk Vật lí 10 - Cánh diều
  • Giải sgk Hóa học 10 - Cánh diều
  • Giải sgk Sinh học 10 - Cánh diều
  • Giải sgk Địa lí 10 - Cánh diều
  • Giải sgk Lịch sử 10 - Cánh diều
  • Giải sgk Kinh tế và Pháp luật 10 - Cánh diều
  • Giải sgk Tin học 10 - Cánh diều
  • Giải sgk Công nghệ 10 - Cánh diều
  • Giải sgk Hoạt động trải nghiệm 10 - Cánh diều
  • Giải sgk Giáo dục quốc phòng 10 - Cánh diều

Từ khóa » Công Thức Cosin Góc Giữa 2 Vecto