Công Thức Khoảng Cách Từ điểm đến Mặt Phẳng
Có thể bạn quan tâm
Trong hình học không gian Oxyz, ta có nhiều cách để tính được khoảng cách từ điểm đến mặt phẳng. Tuy nhiên, nếu đề cho biết tọa độ 1 điểm và phương trình 1 mặt phẳng thì ta nên dùng công thức dưới đây sẽ cho kết quả nhanh và chính xác.

Cơ sở lý thuyết
Trong không gian Oxyz có điểm P(a; b; c) không thuộc mặt phẳng (α), biết rằng mặt phẳng này có phương trình (α): Ax + By + Cz + D = 0. Để tính khoảng cách từ điểm P(a; b; c) tới mặt phẳng (α) ta sử dụng công thức:
d(P, (α)) = $\frac{{\left| {a.A + b.B + c.C + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}$
Bài tập có lời giải
Bài tập 1.Trong không gian có mặt phẳng (α): x – 2y + 3z – 4 = 0. Hãy tìm khoảng cách từ P(1; 1; 1) tới mặt phẳng (α)?
Hướng dẫn giải
Áp dụng công thức tính khoảng cách ở trên: d(P, (α)) = $\frac{{\left| {1.1 + 1.\left( { – 2} \right) + 1.\left( 3 \right) – 4} \right|}}{{\sqrt {{1^2} + {{\left( { – 2} \right)}^2} + {3^2}} }} = \frac{{\sqrt {14} }}{7}$
Kết luận: d(P, (α)) = $\frac{{\sqrt {14} }}{7}$
Bài tập 2. Cho mặt phẳng (α): x + y + z – 9 = 0. Một điểm P nằm trên trục tọa độ Oz thuộc hệ trục Oxyz, cách (α) là 5. Hãy tìm tọa độ của M?
Hướng dẫn giải
Vì P thuộc Oz nên nó có tọa độ là P( 0; 0; z).
Theo công thức khoảng cách ở trên: d(P, (α)) = 5
$5 = \frac{{\left| {1.0 + 1.0 + 1.z – 9} \right|}}{{\sqrt {{1^2} + {1^2} + {1^2}} }} \Leftrightarrow z = 5\sqrt 3 + 9$
Kế luận: P( 0; 0; $5\sqrt 3 + 9$)
Bài tập 3. Hãy tính khoảng cách từ gốc tọa độ O của hệ trục Oxyz tới mặt phẳng (Q): 2x – 3y – 5z + 2 = 0
Hướng dẫn giải
Gốc tọa độ của hệ trục Oxyz có tọa độ O(0; 0; 0)
Áp dụng công thức tính khoảng cách ở trên: d(O, (Q)) = $\frac{{\left| {2.0 + \left( { – 3} \right).0 + \left( { – 5} \right).0 + 2} \right|}}{{\sqrt {{2^2} + {{\left( { – 3} \right)}^2} + {{\left( { – 5} \right)}^2}} }} = \frac{{\sqrt {38} }}{{19}}$
Bài tập 4. Một mặt phẳng (α): – x + 2y + 3z – 4 = 0. Biết khoảng cách từ mp (α) tới P thuộc trục Ox là 2. Hãy xác định tọa độ điểm P.
Hướng dẫn giải
Vì P thuộc Ox nên nó có tọa độ P(x; 0; 0)
Theo đề bài: d(P, (α)) = 2
Áp dụng công thức tính khoảng cách: 2 = $\frac{{\left| {\left( { – 1} \right).x + 2.0 + 3.0 – 4} \right|}}{{\sqrt {{{\left( { – 1} \right)}^2} + {2^2} + {3^2}} }} \Leftrightarrow x = 2\sqrt {14} – 4$
Vậy P( $2\sqrt {14} – 4$; 0; 0)
Bài viết khoảng cách từ 1 điểm đến mặt phẳng tạm dừng ở đây. Với mong muốn mỗi bài viết sẽ giúp bạn hiểu và vận dụng thành thạo công thức nên nếu còn thắc mắc hay góp ý hãy để lại và Toanhoc.org sẽ giúp bạn giải quyết.
Từ khóa » Khoảng Cách Từ điểm đến Mặt Phẳng - Toanhoc.org
-
Công Thức Tính Khoảng Cách Từ Một điểm đến Một đường Thẳng
-
Các Dạng Phương Trình Mặt Phẳng Trong Không Gian Oxyz
-
Ôn Thi đại Học - Page 2 Of 4
-
Công Thức Tính Khoảng Cách Giữa 2 Mặt Phẳng Song Song
-
Các Dạng Phương Trình đường Thẳng Trong Mặt Phẳng Oxy Lớp 10 Và ...
-
Khi Dựng Thang Di động, Nếu Không Xác định được độ Nghiêng Thì ...
-
(P) Là Mặt Phẳng đi Qua D Và Tổng Khoảng Cách Từ A, B, C đến (P) Là ...
-
Tính Khoảng Cách Từ điểm đến Mặt Phẳng - Trần Gia Hưng
-
Hệ Thống Các Công Thức Hình Học 12 Từ Cơ Bản Tới Tăng Lên
-
Top 9 Góc Giữa đường Thẳng Và Mặt Phẳng Toanhoc Org 2022
-
Hệ Thống Các Công Thức Hình Học 12 Từ Căn Bản Tới Nâng Cao