Công Thức Lũy Thừa - Trung Tâm Gia Sư Tâm Tài Đức

3.9/5 - (8 bình chọn)

Mục Lục

Toggle
  • Toàn bộ công thức phần Mũ – Logarit
  • Công thức lũy thừa: Tổng hợp công thức chi tiết
    • 3. Căn bậc n
  • Bài tập vận dụng công thức lũy thừa
    • Dạng 1. Tính các giá trị của một biểu thức – Rút gọn biểu thức.
    • Dạng 2. Chứng minh đẳng thức, bất đẳng thức – So sánh giá trị của biểu thức
  • Bài tập tự luyện
    • Lũy thừa (điều kiện, rút gọn, so sánh)
  • [ Công Thức Lũy Thừa ] Của một tích, lớp 7 , lớp 12, bậc 3
    • Kiến thức về Lũy Thừa
    • Lũy thừa là gì ?
  • Công thức lũy thừa
    • Tính chất của Lũy Thừa
    • Lũy Thừa bậc 3
    • Lũy thừa với số mũ nguyên
    • Lũy thừa với số mũ thực
  • Công thức lũy thừa lớp 6

Toàn bộ công thức phần Mũ – Logarit

A. TÓM TẮT SÁCH GIÁO KHOA

1. Lũy thừa với số mũ nguyên

a. Định nghĩa: Cho n là số nguyên dương và số thực a. Khi đó:

* an = a.a……a (tích n số a)

b. Tính chất: Lũy thừa với số mũ hữu tỉ có đầy đủ tính chất như lũy thừa với số mũ nguyên.

Công thức lũy thừa: Tổng hợp công thức chi tiết

Khái niệm lũy thừa

00 và 0-n không có nghĩa

Người ta thường dùng các lũy thừa của 10 với số mũ nguyên để biểu thị những số rất lớn và những số rất bé. Chẳng hạn: Khối lượng của Trái Đất là 5,97.1024 kg; khối lượng nguyên tử của hiđrô là 1,66.10-24 kg .

3. Căn bậc n

Khái niệm

Cho số thực b và số nguyên dương n ≥ 2. Số a được gọi là căn bậc n của số b nếu an = b

Bài tập vận dụng công thức lũy thừa

Dạng 1. Tính các giá trị của một biểu thức – Rút gọn biểu thức.

Bài 1. Tính các biểu thức sau:

Dạng 2. Chứng minh đẳng thức, bất đẳng thức – So sánh giá trị của biểu thức

Chú ý:

Nếu a > 1 thì α < β ⇔ aα < aβ

Nếu 0 < a < 1 thì α < β ⇔ aα > aβ

Bài 4. Không dùng máy tính và bảng số. Chứng minh:

Bài tập tự luyện

Bài 1. Hãy tính:

Bài tập ví dụ về lũy thừa

Ví dụ 1

Ví dụ 2

Ví dụ 3

Lũy thừa (điều kiện, rút gọn, so sánh)

[ Công Thức Lũy Thừa ] Của một tích, lớp 7 , lớp 12, bậc 3

Kiến thức về Lũy Thừa

Lũy thừa là gì ?

+ Lũy thừa là một phép toán hai ngôi của toán học thực hiện trên hai số a và b, kết quả của phép toán lũy thừa là tích số của phép nhân có b thừa số a nhân với nhau

+ Lũy thừa ký hiệu là ab đọc là lũy thừa bậc b của a hay a mũ b, số a gọi là cơ số, số b gọi là số mũ.

Công thức lũy thừa

Tính chất của Lũy Thừa

Lũy Thừa bậc 3

Lũy thừa với số mũ nguyên

Lũy thừa với số mũ thực

Công thức lũy thừa lớp 6

I. Kiến thức cần nhớ về Luỹ thừa

1. Lũy thừa với số mũ tự nhiên

– Lũy thừa bậc n của a là tích của n thừa số bằng nhau, mỗi thừa số bằng a :

an = a.a…..a (n thừa số a) (n khác 0)

– Trong đó: a được gọi là cơ số.

n được gọi là số mũ.

2. Nhân hai lũy thừa cùng cơ số

– Khi nhân hai lũy thừa cùng cơ số, ta giữa nguyên cơ số và cộng các số mũ.

am. an = am+n

3. Chia hai lũy thừa cùng cơ số

– Khi chia hai lũy thừa cùng cơ số (khác 0), ta giữ nguyên cơ số và trừ các số mũ cho nhau.

am: an = am-n (a ≠ 0, m ≥ 0)

4. Lũy thừa của lũy thừa.

(am)n = am.n

– Ví dụ : (22)4 = 22.4 = 28

5. Nhân hai lũy thừa cùng số mũ, khác sơ số.

am . bm = (a.b)m

– Ví dụ : 33 . 23 = (3.2)3 = 63

6. Chia hai lũy thừa cùng số mũ, khác cơ số.

am : bm = (a : b)m

– Ví dụ : 64 : 34 = (6 : 3)4 = 24

7. Một vài quy ước.

1n = 1; a0 = 1

– Ví dụ : 12018 = 1 ; 20180 = 1

II. Các dạng toán về luỹ thừa với số mũ tự nhiên

  • Dạng 1: Viết các công thức về lũy thừa với số mũ tự nhiên cho ví dụ

* Phương pháp: Áp dụng công thức: an = a.a…..a

Bài 1. (Bài 56 trang 27 SGK Toán 6): Viết gọn các tích sau bằng cách dùng lũy thừa :

a) 5.5.5 5.5.5 ; b) 6.6.6.3.2 ;

c) 2 2.2.3.3 ; d) 100.10.10.10.

* Lời giải:

a) 5.5.5.5.5.5 = 56

b) 6.6.6.3.2 = 6.6.6.6 = 64 ;

c) 2.2.2.3.3 = 23.32 ;

d) 100.10.10.10 = 10.10.10.10.10 = 105 .

Bài 2. (Bài 57 trang 28 SGK Toán 6): Tính giá trị các lũy thừa sau :

a) 23, 24, 25, 26, 27, 28, 29, 210 ;

b) 32, 33, 34, 35;

c) 42, 43, 44;

d) 52, 53, 54;

e) 62, 63, 64.

* Lời giải:

a) 23 = 2.2.2 = 8 ; 24 = 23.2 = 8.2 = 16.

– Làm tương tự như trên ta được :

25 = 32 , 26 = 64 , 27 = 128 , 28 = 256, 29 = 512 , 210 = 1024.

b) 32 = 9, 33 = 27 , 34 = 81, 35 = 243 .

c) 42 = 16, 43 = 64, 44 = 256 .

d) 52 = 25, 53 = 125, 54 = 625.

e) 62 = 36, 63 = 216, 64 = 1296.

Bài 3. (Bài 65 trang 29 SGK Toán 6): Bằng cách tính, em hãy cho biết số nào lớn hơn trong hai số sau?

a) 23 và 32 ; b) 24 và 42 ;

c)25 và 52; d) 210 và 100.

* Lời giải

a) 23 = 8, 32 = 9 . Vì 8 < 9 nên 23 < 32 .

b) 24 =16 , 42=16 nên 24 = 42.

c) 25 = 32 , 52 = 25 nên 25 > 52.

d) 210 = 1024 nên 210 >100.

Bài 4 : Viết gọn các tích sau dưới dạng lũy thừa.

a) 4 . 4 . 4 . 4 . 4

b) 10 . 10 . 10 . 100

c) 2 . 4 . 8 . 8 . 8 . 8

d) x . x . x . x

  • Dạng 2. Viết 1 số dưới dạng luỹ thừa với số mũ lớn hơn 1

* Phương pháp: Vận dụng công thức a.a…..a = an (n thừa số a) (n khác 0)

Bài 1. (Bài 58b; 59b trang 28 SGK Toán 6)

58b) Viết mỗi số sau thành bình phương của một số tự nhiên : 64 ; 169 ; 196.

59b) Viết mỗi số sau thành lập phương của một số tự nhiên : 27 ; 125 ; 216.

* Lời giải

58b) 64 = 8.8 = 82;

169 = 13.13 = 132 ;

196 = 14.14 = 142.

59b) 27 = 3.3,3 = 33 ;

125 = 5.5.5 = 53 ;

216 = 6.6.6 = 63.

Bài 2. (Bài 61 trang 28 SGK Toán 6) Trong các số sau, số nào là lũy thừa của một số tự nhiên với số mũ lớn hơn 1 (chú ý rằng có những số có nhiều cách viết dưới dạng lũy thừa) : 8, 16, 20, 27, 60, 64, 81, 90, 100.

* Lời giải:

8 = 23; 16 = 42 = 24 ;

27 = 33 ; 64 = 82 – 26 = 43;

81 = 92 = 34; 100 = 102.

  • Dạng 3. Nhân 2 luỹ thừa cùng cơ số

* Phương pháp: Vận dụng công thức: am. an = am+n

Bài 1. (Bài 60 trang 28 SGK Toán 6): Viết kết quả phép tính sau dưới dạng một lũy thừa :

a) 33.34 ; b) 52.57; c) 75.7.

* Lời giải:

a) 33.34 = 33+4 = 37 ;

b) 52.57 = 52+7 = 59 ;

c) 75.7 = 75+1 = 76

Bài 2. (Bài 64 trang 29 SGK Toán 6) Viết kết quả phép tính dưới dạng một lũy thừa :

a) 23.22.24;

b) 102.103.105 ;

c) x . x5 ;

d) a3.a2.a5 ;

* Lời giải:

a) 23.22.24 = 23+2+4 = 29 ;

b) 102.103.105 = 102+3+5 = 1010;

c) x.x5 = x1+5 = x6;

d) a3.a2.a5 = a3+2+5 = 210 ;

Bài 3 : Viết các tích sau dưới dạng một lũy thừa.

a) 48 . 220 ; 912 . 275 . 814 ; 643 . 45 . 162

b) 2520 . 1254 ; x7 . x4 . x 3 ; 36 . 46

c) 84 . 23 . 162 ; 23 . 22 . 83 ; y . y7

  • Dạng 4: Chia 2 luỹ thừa cùng cơ số

* Phương pháp: Vận dụng công thức: am: an = am-n (a ≠ 0, m ≥ 0)

Bài 1 : Viết các kết quả sau dưới dạng một lũy thừa.

a) 1255 : 253 b) 276 : 93 c) 420 : 215

d) 24n : 22n e) 644 . 165 : 420 g)324 : 86

Bài 2 : Viết các thương sau dưới dạng một lũy thừa.

a) 49 : 44 ; 178 : 175 ; 210 : 82 ; 1810 : 310 ; 275 : 813

b) 106 : 100 ; 59 : 253 ; 410 : 643 ; 225 : 324 : 184 : 94

  • Dạng 5: Một số dạng toán khác

* Phương pháp: Vận dụng 7 tính chất ở trên biến đổi linh hoạt

Bài 1 : Tính giá trị của các biểu thức sau.

a) a4.a6

b) (a5)7

c) (a3)4 . a9

d) (23)5.(23)4

Bài 2 : Tính giá trị các lũy thừa sau :

a) 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 210.

b) 32 , 33 , 34 , 35.

c) 42, 43, 44.

d) 52 , 53 , 54.

Bài 3 : Viết các tổng sau thành một bình phương.

a) 13 + 23

b) 13 + 23 + 33

c) 13 + 23 + 33 + 43

Bài 4 : Tìm x ∈ N, biết.

a) 3x . 3 = 243

b) 2x . 162 = 1024

c) 64.4x = 168

d) 2x = 16

Bài 5 : Thực hiện các phép tính sau bằng cách hợp lý.

a. (217 + 172).(915 – 315).(24 – 42)

b. (82017 – 82015) : (82104.8)

c. (13 + 23 + 34 + 45).(13 + 23 + 33 + 43).(38 – 812)

d. (28 + 83) : (25.23)

Bài 6: Tìm x, biết.

a) 2x.4 = 128 b) (2x + 1)3 = 125

c) 2x – 26 = 6 d) 64.4x = 45

e) 27.3x = 243 g) 49.7x = 2401

h) 3x = 81 k) 34.3x = 37

n) 3x + 25 = 26.22 + 2.30

* Đáp án:

a) x = 5; b) x = 2; c) x = 5; d) x = 2

e) x = 2; g) x = 2; h) x = 4; k) x = 3; n) x = 4

Bài 7: So sánh

a) 26 và 82 ; 53 và 35 ; 32 và 23 ; 26 và 62

b) A = 2009.2011 và B = 20102

c) A = 2015.2017 và B = 2016.2016

d) 20170 và 12017

Bài 8: Cho A = 1 + 21 + 22 + 23 + … + 22007

a) Tính 2A

b) Chứng minh: A = 22008 – 1

Bài 9: Cho A = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37

a) Tính 2A

b) Chứng minh A = (38 – 1) : 2

Bài 10: Cho A = 1 + 3 + 32 + … + 32006

a) Tính 3A

b) Chứng minh : A = (32007 – 1) : 2

Bài 11: Cho A = 1 + 4 + 42 + 43 + 45 + 46

a) Tính 4A

b) Chứng minh : A = (47 – 1) : 3

Bài 12: Tính tổng

S = 1 + 2 + 22 + 23 + … + 22017

Công thức toán

Gia sư môn toán

Công thức tính diện tích hình thoi

Công thức lũy thừa

Công thức tính thể tích

Từ khóa » Các Công Thức Luỹ Thừa