Công Thức Tính Diện Tích Hình Thang
Có thể bạn quan tâm
Mục Lục
- Công thức tính diện tích hình thang: thường, vuông, cân
- Công thức tính chu vi hình thang: thường, vuông, cân
- Công thức tính diện tích hình thang
- Cách tính diện tích hình thang vuông
- Cách tính diện tích hình thang cân
- Tính độ dài cạnh đáy hình thang
- Tính diện tích hình thang khi biết 4 cạnh
- Công thức heron tính diện tích tam giác
- Lưu Ý Khi Giải Các Bài Tập Về Tính Diện Tích Hình Thang
- Bài tập hình thang, diện tích hình thang
- Cách tính diện tích hình thang
- CÁCH TÍNH DIỆN TÍCH HÌNH THANG
- Công Thức Tính Chiều Cao Hình Thang, Đáy Lớn, Đáy Nhỏ Hình Thang
- Công thức tính chiều cao hình thang khi biết diện tích, chiều dài 2 cạnh
- Công thức tính tổng hai đáy của hình thang khi biết diện tích, chiều cao
- Công Thức Tính Chiều Cao Hình Thang, Đáy Lớn, Đáy Nhỏ Hình Thang
- CÁCH TÍNH DIỆN TÍCH HÌNH THANG
Công thức tính diện tích hình thang: thường, vuông, cân
Công thức tính chu vi hình thang: thường, vuông, cân
Hình thang là một tứ giác lồi có hai cạnh song song mà ta gặp khá nhiều trong cuộc sống hằng ngày. Hai cạnh song song của hình thang được gọi là các cạnh đáy, các cạnh còn lại gọi là cạnh bên. Nếu như việc tính chu vi hình thang thì khá dễ nhớ, chỉ đơn giản là cộng tổng 4 cạnh thì công thức tính diện tích hình thang lại khó ghi nhớ hơn một chút.
Có 3 loại hình thang thường gặp là:
- Hình thang thường
- Hình thang vuông
- Hình thang cân
Công thức tính diện tích hình thang
Khái niệm: Hình thang là một tứ giác lồi có hai cạnh đáy song song, 2 cạnh còn lại được gọi là hai cạnh bên.
Có hình thang ABCD với độ dài đáy AB là a, đáy CD là b và chiều cao h.
Công thức tính diện tích hình thang: trung bình cộng 2 cạnh đáy nhân với chiều cao giữa 2 đáy.
Trong đó:
- S là diện tích hình thang.
- a và b là độ dài 2 cạnh đáy.
- h là chiều cao hạ từ cạnh đáy a xuống b hoặc ngược lại (khoảng cách giữa 2 cạnh đáy).
Còn có bài thơ về tính diện tích hình thang khá dễ nhớ như sau:
Muốn tính diện tích hình thang
Đáy lớn đáy nhỏ ta đem cộng vào
Cộng vào nhân với chiều cao
Chia đôi lấy nửa thế nào cũng ra
Ví dụ:
Một hình thang có chiều cao = 4cm, đáy bé a = 5cm, đáy lớn b = 12cm. Diện tích hình thang trên?
Áp dụng công thức S = h x ((a +b)/2) = 4 x ((5+12)/2)= 34 (cm).
Còn có bài thơ về tính diện tích hình thang khá dễ nhớ như sau:
Muốn tính diện tích hình thang
Đáy lớn đáy nhỏ ta đem cộng vào
Cộng vào nhân với chiều cao
Chia đôi lấy nửa thế nào cũng ra.
Cách tính diện tích hình thang vuông
Hình thang vuông là hình thang có một góc vuông. Cạnh bên vuông góc với hai đáy cũng chính là chiều cao h của hình thang.
Công thức chung tính diện tích hình thang vuông tương tự như hình thang thường: trung bình cộng 2 cạnh đáy nhân với chiều cao giữa 2 đáy, tuy nhiên chiều cao ở đây chính là cạnh bên vuông góc với cả 2 đáy.
Trong đó:
- S là diện tích hình thang.
- a và b là độ dài 2 cạnh đáy.
- h là độ dài cạnh bên vuông góc với 2 đáy.
Một hình thang vuông ABHD có độ dài đáy bé đáy lớn lần lượt là 8cm, 12cm. Trong đó có cạnh AH = 8cm. Hãy tính diện tích hình thang vuông đó.
Áp dụng công thức: S = h x ((a + b)/2) = 8 x ((8 + 12)/ 2) = 80cm.
Cách tính diện tích hình thang cân
Hình thang cân là hình thang có hai góc kề một đáy bằng nhau. 2 cạnh bên của hình thang cân bằng nhau và không song song với nhau.
Ngoài việc áp dụng công thức như tính hình thang bình thường, bạn cũng có thể chia nhỏ hình thang cân ra để tính diện tích từng phần rồi cộng lại với nhau.
Giả dụ, hình thang cân ABCD có 2 cạnh bên AD và BC bằng nhau. Đường cao AH và BK, hình thang sẽ được chia ra thành 1 hình chữ nhật ABKH và 2 hình tam giác là ADH và BCK. Áp dụng công thức tính diện tích hình chữ nhật cho ABHK và diện tích tam giác cho ADH và BCK sau đó cộng tất cả diện tích để tìm diện tích hình thang ABCD.
Cụ thể thế này:
Ví dụ: S = h x ((a + b)/2) = 8 x ((8+16)/2) = 96cm.
S = 2 x S.ACH + S.ABHF = 2 x 1/2 x 8 x 4 + 8 x 8 = 96cm.
Tính độ dài cạnh đáy hình thang
Khi biết diện tích, chiều cao và độ dài 1 cạnh đáy, bạn có thể tính được độ dài cạnh còn lại như sau:
AB= 2 x (SABCD/h) - CDTính diện tích hình thang khi biết 4 cạnh
Ta có công thức như sau:
Trong đó:
+ a,b: lần lượt là độ dài 2 cạnh đáy.
+ c,d: lần lượt là đội dài 2 cạnh bên.
Thực tế nếu bài toán đưa ra câu hỏi cách tính 4 cạnh của hình thang khi biết 4 cạnh thì sẽ không có đáp án chính xác vì chỉ biết 4 cạnh thì có rất nhiều trường hợp xay ra và diện tích cũng khác nhau, các bạn có thể hình dung ví dụ hình thang dưới đây có 4 cạnh 4 5 6 9 có thể vẽ 3 dạng hình khác nhau với diện tích khác nhau.
Tuy nhiên nếu bài toán cho thêm vài dữ kiện ví dụ như tính diện tích hình thang khi biết độ dài 4 cạnh và có nõi rõ cạnh đáy là cạnh nào thì có thể tính được diện tích hình thang, ví dụ chúng ta có các cạnh đấy Q P, trong đó cạnh đáy P dài hơn và 2 cạnh bên R và S.
Thì có thể áp dụng công thức tính diện tích hình thang như sau:
Ngoài ra trong trường hợp tính diện tích hình thang khi biết các cạnh các bạn có thể tách ra thành 2 tam giác và 1 hình chữ nhật hoặc kẻ thêm đường giao giữa 2 cạnh bên và áp dụng công thức Heron tính diện tích tam giác và suy ra được diện tích hình thang. Công thức trên cũng được hình thành từ cách này.
Công thức heron tính diện tích tam giác
Gọi S là diện tích và độ dài 3 cạnh tam giác lần lượt là a, b và c
Công thức Heron còn có thể được viết lại bằng
Lưu Ý Khi Giải Các Bài Tập Về Tính Diện Tích Hình Thang
– Trong quá trình giải toán, nhiều bậc phụ huynh, nhiều bạn học sinh băn khoăn không biết “hình thang có thể tích hay không? Công thức tính thể tích hình thang cân thế nào?“. Với câu hỏi này, các bạn sẽ không thể tìm được đáp án trả lời vì hình thang là đa giác trong hình học phẳng, không có thể tích như hình không gian.
– Ở hình học cấp 2, các bạn học sinh sẽ tiếp tục được tiếp cận với các dạng toán về hình thang. Tuy nhiên, các bài tập lúc này không chỉ đơn giản là tính chu vi, diện tích mà đòi hỏi sự tư duy sâu, kết hợp các tính chất về góc (tổng 2 góc kề 1 đáy trong hình thang bằng 180°), tính chất các cạnh bên, tính chất về đường trung bình của hình thang,… Tuy nhiên, ở cấp tiểu học, các bạn chỉ cần nắm được các công thức tính diện tích hình thang kể trên là đã có thể giải được hầu hết các bài toán trong chương trình học của mình rồi.
Bài tập hình thang, diện tích hình thang
Cho hình chữ nhật ABCD có diện tích là 15cm2, AB = 5cm. Cho E nằm trên đường thẳng DC với C nằm giữa D và E và độ dài DE = 7cm. Tính diện tích hình ABED.
Giải:
Theo đề bài đưa ra, ta có hình như sau:
ABCD là hình chữ nhật, E nằm trên DC nên AB // DE, góc ADC = 90 độ
=> ABED là hình thang vuông
Tính cạnh AD = SABCD : AB = 15 : 5 = 3cm
Do đó, Diện tích hình thang vuông ABED = AD . (AB + DE) : 2 = 3 . ( 5 + 7) : 2 = 18cm2
Ví dụ cho một hình thang có chiều dài cạnh a= 20cm, cạnh b= 14cm và chiều cao nối từ đỉnh hình tháng xuống đáy là 12cm. Hỏi diện tích hình thang là bao nhiêu?
Cách giải: Có a= 20 cm, b = 14cm, h=25cm. Hỏi S=?
Dựa theo công thức tính diện tích hình thang, ta có:
S = h x (a +b/2) hoặc 1/2 (a+b) x h
S = 12 x ((20 + 14)/2) hoặc 1/2 x (20+14) x 25
S = 1/2 x 34 x 25 = 425 cm.
Như vậy dựa vào công thức tính diện tích hình thang, chúng ta có thể tìm ra diện tích hình thang bằng 425 cm.
Cho hình chữ nhật ABCD có diện tích là 15cm2, AB = 5cm. Cho E nằm trên đường thẳng DC với C nằm giữa D và E và độ dài DE = 7. Tính diện tích hình ABED.
Giải:
Theo đề bài đưa ra, ta có hình như sau:ABCD là hình chữ nhật, E nằm trên DC nên AB // DE, góc ADC = 90 độ
=> ABED là hình thang vuôngTính cạnh AD = SABCD : AB = 15 : 5 = 3cmDo đó, Diện tích hình thang vuông ABED = AD . (AB + DE) : 2 = 3 . ( 5 + 7) : 2 = 18cm2
Bài toán: Có hình thang ABCD có đáy nhỏ AB = 5 cm, đáy lớn DC dài gấp đôi đáy nhỏ. Chiều cao của hình thang AH = 6 cm. Tính diện tích hình thang.
Cách tính diện tích hình thangKiến thức về hình thang khá phổ biến với các bạn học sinh cấp 1. Để ôn lại các bài toán liên quan tới tính diện tích hình thang, mời bạn theo dõi các thông tin và ví dụ minh họa ngay dưới đây.
Trước hết ta cần định nghĩa hình thang là gì? Hình thang là tứ giác lồi có 2 cặp cạnh đối diện song song với nhau và đây là 2 cạnh đáy, 2 cạnh đối diện còn lại là 2 cạnh bên. Các tính chất khác của hình thang bao gồm: 2 góc kề có tổng bằng 360 độ, đường thẳng nối trung điểm của 2 cạnh bên được gọi là đường trung bình của hình thang.
Các loại hình thang gồm: Hình thang vuông (hình thang có 1 góc vuông), hình thang cân (hình thang có 2 cạnh kề bằng nhau), hình thang vuông cân (chính là hình chữ nhật).
CÁCH TÍNH DIỆN TÍCH HÌNH THANG
Công thức tính diện tích hình thang: S = 1⁄2 h (a + b) (Diện tích hình thang bằng một nửa tích của tổng 2 đáy và chiều cao ứng với 2 cạnh đáy, đơn vị diện tích là mét vuông).
Giải thích công thức:
S: Diện tích hình thang
a, b: Độ dài 2 đáy của hình thang
h: Độ dài đường cao
Để dễ nhớ cách tính diện tích hình thang, bạn có thể học thuộc lòng khổ thơ sau:
Muốn tính diện tích hình thang
Đáy lớn, đáy nhỏ ta mang cộng vào
Rồi đem nhân với đường cao
Chia đôi kết quả thế nào cũng ra.
Dưới đây là ví dụ minh họa giúp bạn áp dụng công thức tính diện tích hình thang.
Bài toán: Có hình thang ABCD có đáy nhỏ AB = 5 cm, đáy lớn DC dài gấp đôi đáy nhỏ. Chiều cao của hình thang AH = 6 cm. Tính diện tích hình thang.
Giải:
Bài toán cho biết:
AB = 5 cm
DC dài gấp đôi AB, suy ra DC = 10 cm
AH = 6 cm
Áp dụng ngay công thức tính diện tích hình thang ta được phép tính:
S = 1⁄2 h (a + b) = 1⁄2 x 6 x (5 + 10) = 40 cm2
Đáp số: 40 cm2
Câu 1. Cho hình thang ABCD có độ dài đường cao là 4,2 dm, diện tích = 36,12 dm2 và đáy lớn CD dài hơn đáy bé AB là 7,8 dm. Kéo dài AD và BC cắt nhau tại E. Biết AD = 3/5 DE. Hỏi diện tích hình tam giác ABE là bao nhiêu?
Câu 2. Cho hình thang ABCD. Bốn điểm M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Biết diện tích tứ giác MNPQ là 115 cm2. Tính diện tích hình thang ABCD.
Câu 3. Cho hình thang vuông ABCD (góc A, D là góc vuông) có AB=4cm, DC=5cm, AD=3cm. Nối D với B được hai hình tam giác ABD và BDC.
a) Tính diện tích hình tam giác đó.
b) Tính tỉ số phần trăm của diện tích hình tam giác ABD và diện tích hình tam giác BDC.
Câu 4. Tính diện tích hình thang có :
a). Đáy lớn 8m; đáy bé 75dm; chiều cao 32dm.
b). Đáy lớn 1,9m; đáy bé 1,3m; chiều cao 0,9m.
c). Đáy lớn 2/3m; đáy bé 1/2m; chiều cao 3/5m.
Câu 5. Tính chiều cao hình thang có:
a). Diện tích 30cm²; đáy lớn 8cm và đáy bé 0,4dm.
b). Diện tích 6,4 dm²; đáy lớn 1,8dm; đáy bé 1,4dm.
c). Diện tích 3/4m²; đáy lớn 1/4m và đáy bé 1/8m.
Câu 6. Tính tổng hai đáy hình thang có:
a). Diện tích 3,6 dam²; chiều cao 1,2dam.
b). Diện tích 3/4m²; chiều cao 2/3m.
c). Diện tích 2400cm²; chiều cao 3,8dm.
Câu 7. Một miếng đất hình thang có đáy bé 18m và bằng ¾ đáy lớn. Tính diện tích miếng đất hình thang?
Câu 8. Một thửa ruộng hình thang vuông có cạnh bên vuông góc với 2 đáy dài 30,5m; đáy lớn 120,4m; đáy bé 79,6m.
a. Tính diện tích thửa ruộng bằng dam²
b. Trung bình 100dam2 thu được 65,2kg thóc. Hỏi trên cả thửa ruộng thu được bao nhiêu kg thóc?
Câu 9. Một hình thang có tổng hai đáy 110cm. Tổng của đáy lớn và chiều cao 114cm. Tổng của đáy bé và chiều cao là 68cm. Tính diện tích hình thang?
Câu 10. Một hình thang có đáy bé 2,8dm.Đáy lớn bằng 7/3 đáy bé và bằng 5/3 chiều cao. Tính diện tích hình thang.
Câu 11. Một thửa ruộng hình thang có đáy lớn 140m và bằng 4/3 đáy bé, chiều cao 56,4m. Tính ra cứ 5dam² thì thu hoạch được 320kg thóc. Hỏi cả thửa ruộng thu được bao nhiêu tấn thóc?
Câu 12. Một miếng đất hình thang có tổng đáy lớn, đáy bé và chiều cao là 90m. Đáy bé bằng 3/4 đáy bé; chiều cao bằng ½ đáy lớn. Biết rằng cứ 2 dam² thì cần phải bón 50kg phân. Hỏi bón cả thửa ruộng thì cần phải có bao nhiêu tạ phân?
Câu 13. Một thửa ruộng hình thang có đáy lớn 75,6m; đáy bé 62,4m và chiều cao 40m. Biết rằng 2/5 diện tích thửa ruộng trồng ngô, 1/3 diện tích trồng khoai, còn lại trồng đậu phộng. Tính diện tích trồng mỗi loại cây trên?
Công Thức Tính Chiều Cao Hình Thang, Đáy Lớn, Đáy Nhỏ Hình Thang
Với công thức tính diện tích hình thang ở trên, ta cũng có thể dễ dàng giải các bài tập nâng cao về hình thang: tính chiều cao hình thang khi biết diện tích; tính đáy lớn, đáy nhỏ hình thang khi biết diện tích như sau:
Công thức tính chiều cao hình thang khi biết diện tích, chiều dài 2 cạnh
Công thức tính tổng hai đáy của hình thang khi biết diện tích, chiều cao
Công thức toán
Gia sư môn toán
Công thức tính diện tích hình bình hành
Công thức tính diện tích hình thang
Công thức tính diện tích hình thoi
Từ khóa » Công Thức Cách Tính Diện Tích Hình Thang
-
Công Thức Tính Diện Tích Hình Thang: Thường, Vuông, Cân
-
Công Thức Tính Diện Tích Hình Thang - THPT Sóc Trăng
-
Công Thức Tính Diện Tích Hình Thang, Chu Vi Hình Thang (từ A đến Z)
-
Công Thức Tính Diện Tích Hình Thang, Chu Vi Hình Thang
-
Công Thức Tính Diện Tích Hình Thang Thường, Cân, Vuông - Thủ Thuật
-
Công Thức Tính Diện Tích Hình Thang (thường, Vuông, Cân)
-
Công Thức Tính Diện Tích Hình Thang: Thường, Cân Chính Xác 100%
-
Cách để Tính Diện Tích Hình Thang - WikiHow
-
Diện Tích Hình Thang Vuông, Cân, Thường - Công Thức, Cách Tính
-
Cách Tính Diện Tích Hình Thang, Ví Dụ Minh Họa
-
Công Thức Tính Diện Tích Hình Thang: Thường, Vuông, Cân Chính Xác ...
-
Công Thức Tính Diện Tích Hình Thang Kèm 5 Ví Dụ Hay - GENCE
-
Hướng Dẫn: Cách Tính Diện Tích Hình Thang Cân - Vuông
-
Cách Tính Diện Tích Hình Thang - Thủ Thuật Phần Mềm