Công Thức Tính Nhanh Số Phức - TopLoigiai
Có thể bạn quan tâm
Khái niệm số phức
Số phức có dạng z = a + bi, (a, b ∈ ℜ), trong đó a là phần thực, b là phần ảo, i là đơn vị ảo: i² = - 1
Tập hợp các số phức là C
Nếu a = 0, z = bi được gọi là số thuần ảo
Nếu b = 0 , z = a + 0i được gọi là số thực
Số 0 vừa là số thực, vừa là số ảo
Số đối của phức z = a + bi là -z = - a - bi
Các phép toán trên tập số phức
Cho hai số phức z₁ = a + bi, z₂ = c + di.
Hai số phức bằng nhau:
Tổng, hiệu hai số phức z₁ ± z₂ = (a ± b) + (b ± d)i.
Phép nhân hai số phức z₁.z₂ = (a + bi) (c + di) = ac + adi + bci + bdi² = (ac - bd) + (ad + bc)i.
Phép chia hai số phức
Môđun của số phức, số phức liên hợp
Phương trình trên tập số phức
Công thức tính nhanh số phức hay được dùng trong các đề thi
Ví dụ áp dụng
Một số bài tập có lời giải số phức
Câu 1: Cho số phức z thỏa mãn điều kiện |z - 3 + 4i| ≤ 2. Trong mặt phẳng Oxy tập hợp điểm biểu diễn số phức w = 2z + 1 - i là hình tròn có diện tích:
A. S = 9π B. S = 12π. C. S = 16π. D.S = 25π.
Hướng dẫn:
Ta có:
<=> |w - 1 + i - 6 + 8i| ≤ 4 <=> |w - 7 + 9i| ≤ 4 (1)
Giả sử w = x + yi, khi đó (1) <=> (x - 7)2 + (y + 9)2 ≤ 16
Suy ra tập hợp điểm biểu diễn số phức w là hình tròn tâm I(7; -9), bán kính r = 4
Vậy diện tích cần tìm là S = π.42 = 16π
Chọn C.
Câu 2: Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu thức
A.5 B.4 C.6 D.8
Hướng dẫn:
Ta có:
Khi z = i thì A = 6
Chọn C.
Câu 3. Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất max M và giá trị nhỏ nhất min M của biểu thức M = |z2 + z + 1| + |z3 + 1|
A. max M = 5; min M = 1 B. max M = 5; min M = 2
C. max M = 4; min M = 1 D.max M = 4; min M = 2
Hướng dẫn:
Ta có: M ≤ |z|2 + |z| + 1 + |z|3 + 1 = 5 ,
khi z = 1 thì M = 5 nên ma M = 5
Mặt khác:
khi z = -1 thì M = 1 nên min M = 1
Chọn A.
Câu 4. Cho số phức z thỏa |z| ≥ 2 . Tìm tích của giá trị lớn nhất và nhỏ nhất của biểu thức:
Hướng dẫn:
Chọn A.
Câu 5. Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu thức P = |1 + z| + 3|1 - z|
Hướng dẫn:
Chọn D.
Câu 6. Cho số phức z thỏa mãn điều kiện |z2 + 4| = 2|z|. Khẳng định nào sau đây là đúng?
Hướng dẫn:
Áp dụng bất đẳng thức |u| + |v| ≥ | u + v|, ta được:
2|z| + |-4| = |z2 + 4| + |-4| ≥ |z|2 => |z|2 - 2|z| - 4 ≤ 0 => |z| ≤ √5 + 1.
2|z| + |z|2 = |z2 + 4| + |-z2| ≥ 4 => |z|2 + 2|z| - 4 ≥ 0 => |z| ≥ √5 - 1
Vậy |z| nhỏ nhất là √5 - 1 khi z = -1 + i√5 và |z| lớn nhất là √5 + 1 khi z = 1 + i√5
Chọn B.
Hướng dẫn:
Gọi z1 = a + bi; z2 = a - bi.
Không mất tính tổng quát ta coi b ≥ 0
Do |z1 - z2| = 2√3 => |2bi| = 2√3 => b = √3
đạt giá trị lớn nhất. Tính tích xy.
Hướng dẫn:
Câu 9. Biết số phức z thỏa mãn đồng thời hai điều kiện |z - 3 - 4i| = √5 và biểu thức M = |z + 2|2 - |z - i|2 đạt giá trị lớn nhất. Tính môđun của số phức z + i.
A. |z + i| = 2√41
B. |z + i| = 3√5
C. |z + i| = 5√2
D. |z + i| = √41
Hướng dẫn:
Gọi z = x + yi.
Ta có: |z - 3 - 4i| = √5 <=> (C): (x - 3)2 + (y - 4)2 = 5, tâm I(3; 4) và R = √5
Mặt khác:
M = |z + 2|2 - |z - i|2 = (x + 2)2 + y2 - [(x2) + (y - 1)2] = 4x + 2y + 3
<=> d: 4x + 4y + 3 - M = 0
Do số phức z thỏa mãn đồng thời hai điều kiện nên d và (C) có điểm chung
Câu 10. Cho số phức z thỏa mãn điều kiện: |z - 1 + 2i| = √5 và w = z + 1 + i có môđun lớn nhất. Số phức z có môđun bằng:
A. 2√5 B. 3√2
C. √6 D. 5√2
Hướng dẫn:
Mà M, N ∈ (C) nên MN lớn nhất khi MN là đường kính đường tròn (C)
Khi và chỉ khi I là trung điểm MN => M(3; 3) => z = 3 - 3i
Chọn B
Từ khóa » Công Thức Modun
-
Modun Số Phức Và Các Tính Chất Liên Quan - Toán Thầy Định
-
Đầy đủ Lý Thuyết Và Bài Tập Số Phức Modun
-
[Định Nghĩa] [Tính Chất] [Công Thức] Modun Số Phức - Ibaitap
-
Bộ Công Thức Số Phức Chi Tiết Và Các Dạng Toán Số Phức Liên Quan
-
Tổng Hợp Kiến Thức Cơ Bản Và Các Công Thức Số Phức
-
Lý Thuyết Số Phức - Đầy đủ Chi Tiết
-
Tổng Hợp Lý Thuyết Toán 12 Chương Số Phức Chọn Lọc - Kiến Guru
-
Công Thức Tính Môđun Của Số Phức
-
Top 11 Công Thức Modun - Ôn Thi HSG
-
Công Thức Tính Mođun Bánh Răng Chuẩn Xác Nhất
-
Cách Tìm Môđun Của Số Phức Cực Hay, Chi Tiết - Toán Lớp 12
-
Công Thức Giải Nhanh Max Min Số Phức Hay Nhất - TopLoigiai
-
Các Tính Chất Của Số Phức - Randy-rhoads