Công Thức Tính Tích Vô Hướng Của Hai Vecto Trong Không Gian Cực Hay
Có thể bạn quan tâm
- HOT Ra mắt Sách tổng ôn 12 (2k8) toán, văn, anh.... (từ 80k/1 cuốn)
Bài viết Công thức tính Tích vô hướng của hai vecto trong không gian với phương pháp giải chi tiết giúp học sinh ôn tập, biết cách làm bài tập Công thức tính Tích vô hướng của hai vecto trong không gian.
- Cách giải bài tập Tích vô hướng của hai vecto trong không gian
- Bài tập vận dụng Tích vô hướng của hai vecto trong không gian
Công thức tính Tích vô hướng của hai vecto trong không gian (cực hay)
(199k) Xem Khóa học Toán 12 KNTTXem Khóa học Toán 12 CDXem Khóa học Toán 12 CTST
Bài giảng: Các dạng bài tập hệ trục tọa độ trong không gian - Cô Nguyễn Phương Anh (Giáo viên VietJack)
A. Phương pháp giải & Ví dụ
Quảng cáo+ Tích vô hướng của hai vecto:
a→.b→=a1.b1+ a2.b2+ a3.b3
+ a→⊥b→⇔a1.b1+ a2.b2+ a3.b3=0
+ a→2=a12+a22+a32
Ví dụ minh họa
Bài 1: Trong không gian với hệ trục tọa độ Oxyz, cho các vecto a→=(1;2;1),
b→=(3;-1;2), c→=(4; -1; -3),d→=(3; -3; -5),u→=(1;m;2),m∈R.
a) Tính a→.b→; b→(a→-2c→)
b) So sánh a→.(b→.c→) và (a→.b→ ) c→
c) Tính các góc (a→,b→ ), ( a→+b→,3a→- 2c→ )
d) Tìm m để u→⊥(b→+d→)
e) Tìm m để (u→,a→ )=600
Quảng cáoLời giải:
a) a→ =(1;2;1),b→ =(3;-1;2)
⇒a→ .b→ =1.3+2.(-1)+1.2=3.
c→ =(4; -1; -3)⇒2c→ =(8; -2; -6)⇒ a→ -2c→ =(-7;4;7)
⇒b→ (a→ -2c→ )=3.(-7)-1.4+2.7=-11
b) b→ .c→ =3.4+(-1).(-1)+2.(-3)=7⇒a→ .(b→ .c→ )=(7;14;7)
a→ .b→ =3⇒(a→ .b→ ) c→ =(12; -3; -9)
Vậy a→ .(b→ .c→ )≠(a→ .b→ ) c→
c) Ta có:
⇒(a→.b→ )≈710
+ a→+ b→=(4;1;3),3a→- 2c→=(-5;8;9)
⇒cos( a→+b→,3a→- 2c→ )
⇒( a→ +b→ ,3a→ - 2c→ )≈770
d) b→ +d→ =(6; -4; -3); u→ =(1;m;2)
u ⃗⊥(b→ +d ⃗ )⇔u→ .(b→ +d→ )=0⇔6-4m-6=0⇔m=0
e)
(u→ ,a→ )=600⇔cos(u→ ,a→ )=1/2
Bài 2: Trong không gian hệ tọa độ Oxyz, cho hai vecto a→,b→ sao cho (a→,b→ )=1200,
|a→ |=2; |b→ |=3. Tính |a→+ b→ | và |a→-2b→ |
Lời giải:
Áp dụng công thức: a→ .b→ =|a→ |.|b→ |.cos(a→ ,b→ )
Ta có: |a→ + b→ |2=(a→ + b→ )2=a→ 2+2a→ .b→ +b→ 2
=|a→ |2+|b→ |2+2|a→ |.|b→ |.cos(a→ ,b→ )=4+9+2.2.3.((-1)/2)=7
⇒|a→ + b→ |=√7
Tương tự:
|a→ -2b→ |2 =|a→ |2+4|b→ |2-4|a→ |.|b→ |.cos(a→ ,b→ )=4+36-4.2.3.((-1)/2)=52
⇒|a→ -2b→ |=2√(13)
Quảng cáoBài 3: Trong không gian Oxyz, cho các điểm A(2; -1; 1), B(3; 5; 2), C(8; 4; 3), D(-2; 2m+1; -3)
a) Chứng minh tam giác ABC là tam giác vuông
b) Tìm m sao cho tam giác ABD vuông tại A
c) Tính số đo góc A của tam giác ABC
Lời giải:
a) Ta có: AB→=(1;6;1); BC→=(5;-1;1)
⇒AB→.BC→=1.5+6.(-1)+1.1=0
⇒AB→⊥BC→⇒ΔABC vuông tại B.
b) AB→=(1;6;1); AD→=(-4;2m+2; -4)
Tam giác ABD vuông tại A ⇔AB→.AD→=0
⇔1.(-4)+6.(2m+2)+1.(-4)=0
⇔12m+4=0⇔m=(-1)/3
c) AB→=(1;6;1); AC→=(6;5;2)
cosA=cos(AB→;AC→ )
⇒Â≈400
B. Bài tập vận dụng
Bài 1: Cho các vectơ u→(u1;u2;u3) và v→(v1;v2;v3), u→. v→=0 khi và chỉ khi:
A. u1v1+u2v2+u3v3=0
B. u1+v1+u2+v2+u3+v3=0
C. u1v1+u2v2+u3v3=1
D. u1v2+u2v3+u3v1=-1
Lời giải:
Đáp án : A
Bài 2: Cho hai vectơ a→ và b→ tạo với nhau góc 600 và |a→| =2; |b→| =4. Khi đó |a→ + b→ | bằng:
A. 2√7 B. 2√3
C. 2√5 D. 2
Lời giải:
Đáp án : A
Giải thích :
|a→ + b→ |2=(a→ + b→ )2=|a→ |2+|b→ |2+2|a→ |.|b→ |.cos(a→ + b→ )
=4+16+2.2.4.1/2=28
⇒|a→ + b→ |=2√7
Quảng cáoBài 3: Cho a→(-2;1;3), b→(1;2;m). Với giá trị nào của m để a→ vuông góc với b→ ?
A. m=-1 B. m=1
C. m=2 D. m=0
Lời giải:
Đáp án : D
Giải thích :
a→ vuông góc với b→ khi và chỉ khi a→ . b→=0
⇔-2.1+1.2+3.m=0⇔m=0
Bài 4: Tính cosin của góc giữa hai vectơ a→ và b→ biết a→(8;4;1), b→(2;-2;1)
A. 1/2 B. √(2)/2
C. √(3)/2 D. 1/3
Lời giải:
Đáp án : D
Giải thích :
cos(a→ , b→)
Bài 5: Cho tam giác ABC với A(-1;-2;4), B(-4;-2;0), C(3;-2;1). Khi đó số đo của góc BACˆ bằng:
A. 300 B. 900
C. 600 D. 450
Lời giải:
Đáp án : B
Giải thích :
AB→=(-3;0; -4); AC→=(4;0;-3)
cosBACˆ=cos( AB→ ; AC→)
⇒BACˆ=900
Bài 6: Cho bốn điểm A(1;0;0), B(0;1;0), C(0;0;1), D(-2;1;-1). Khi đó số đo của góc giữa hai đường thẳng AB và CD là :
A. 300 B. 450
C. 600 D. 900
Lời giải:
Đáp án : B
Giải thích :
AB→ =(-1;1;0); CD→ =(-2;1; -2)
Gọi góc giữa 2 đường thẳng AB và CD là α
⇒α=450
Bài 7: Trong không gian với hệ toạ độ Oxyz, cho hai vecto a→; b→. Trong các khẳng định sau, khẳng định nào đúng:
A. a→ .|b→ |=|a→ |.b→ với mọi a→ ; b→
B. ( a→ b→ )2=a→ 2 . b→ 2 với mọi a→ ; b→
C. |a→ . b→ | ≤|a→ |.|b→ | với mọi a→ ; b→
D. a→ . b→ =0 khi và chỉ khi a→ = 0→ hoặc b→ = 0→
Lời giải:
Đáp án : C
Giải thích :
VD: a→ =(2; -3;1), b→ =(1;1;1)
⇒|a→ |=√14; |b→ |=√3
a) a→ . |b→ |=(2√3; -3√3;√3)
|a→ |. b→ =(√14; √14; √14)
⇒ a→ . |b→ |≠| a→ | . b→
b) a→ b→ =2.1-3.1+1.1=0
a→ 2 . b→ 2=14.3=52
⇒( a→ b→ )2≠ a→ 2 . b→ 2
d) a→ b→ =0 nhưng a→ ≠ 0→ hoặc b→ ≠ 0→
Vậy a, b, d sai, c đúng.
Bài 8: Trong không gian Oxyz, cho a→(-1;2;-3), b→(3;3;4), c→(5;0-1). Giá trị của a→ (b→ + c→ ) là:
A. 8 B. 11
C. -8 D. -11
Lời giải:
Đáp án : D
Giải thích :
b→ + c→ =(8;3;3)
⇒ a→ (b→ + c→ )=-1.8+2.3-3.3=-11
Bài 9: Cho 3 điểm A(2; 1; -3), B(–2; 2; –6), C(5; 0; –1). Tích AB→. AC→ bằng:
A. -6 B. 65
C. -19 D. 33
Lời giải:
Đáp án : C
Giải thích :
AB→ =(-4;1; -3); AC→=(3; -1;2)
⇒ AB→ . AC→ =-4.3+1.(-1)-3.2=-19
Bài 10: Trong không gian với hệ tọa độ Oxyz, điều kiện để a→ vuông góc với b→ là gì ?
A. a→ . b→ =0 B. [ a→ , b→] = 0→
C. a→ + b→ = 0→ D. a→ - b→ = 0→
Lời giải:
Đáp án : A
Giải thích :
Bài 11: Cho hai vecto a→; b→thay đổi nhưng luôn thỏa mãn |a→|=5; |b→ |=3. Giá trị lớn nhất của |a→ -2 b→ | là:
A. 11 B. -1
C. 1 D. √61
Lời giải:
Đáp án : D
Giải thích :
Ta có: |a→ - 2 b→ |2 = ( a→ - 2 b→ )2 = | a→ |2 + 4| b→ |2 - 4| a→ |.| b→ |.cos( a→ ; b→ )
| a→ -2 b→ | lớn nhất ⇔ | a→ - 2 b→ |2 lớn nhất ⇔cos( a→ ; b→ )=0
Khi đó: | a→ - 2 b→ |2=| a→ |2+4| b→ |2=25+4.9=61
⇒|a→ - 2 b→ |=√61
Bài 12: Trong không gian với hệ toạ độ Oxyz, cho ba vectơ a→(-1;1;0), b→(1;1;0), c→(1;1;1,). Trong các mệnh đề sau, mệnh đề nào sai ?
A. | a→|= √2 B. c→ ⊥ b→
C. a→ ⊥ b→ D. | c→ |=√3
Lời giải:
Đáp án : B
Giải thích :
Ta có: c→ . b→=1.1+1.1+0.1=2≠0
⇒ Hai vecto c→ ; b→ không vuông góc với nhau
Bài 13: Trong không gian với hệ toạ độ Oxyz, cho tam giác ABC có AB→=(-3;0;4), AC→=(5;-2;4). Độ dài trung tuyến AM là:
A. 3√2 B. 4√2
C. 2√3 D. 5√3
Lời giải:
Đáp án : A
Giải thích :
Ta có: AB=|AB→ |=5; AC=|AC→ |=√45
cosBACˆ =cos(AB→ ; AC→ )
Ta có: BC2=AB2+AC2 - 2AB.AC.cosBACˆ =68
AM là trung tuyến
⇒AM=3√2
Bài 14: Cho | a→ |=2; | b→ |=5, góc giữa hai vectơ a→ và b→ bằng (2π)/3, u→ = k a→ - b→; v→ = a→ + 2 b→. Để u→ vuông góc với v→ thì k bằng?
A. -45/6 B. 45/6
C. 6/45 D. -6/45
Lời giải:
Đáp án : A
Giải thích :
u→ = k a→ - b→; v→ = a→ + 2 b→
⇒ u→ . v→ =(k a→ - b→ )(a→ +2 b→ )=k a→ 2-2 b→ 2+(2k-1) a→ . b→
Ta có: a→ . b→ =| a→ |.| b→ |.cos( a→ ; b→ )=2.5.cos(2π/3)=-5
⇒ u→ . v→ =4k-2.25+(2k-1).(-5)=-6k-45
Giả thiết: u→ và v→ vuông góc với nhau ⇒ u→ . v→ =0
⇒-6k-45=0 ⇔ k=(-45)/6
Bài 15: Trong không gian với hệ tọa độ Oxyz, cho a→=(x;2;1), b→ =(2;1;2), Tìm x biết cos( a→ , b→ )=2/3.
A. x=1/2 B. x=1/3
C. x=3/2 D. x=1/4
Lời giải:
Đáp án : D
Giải thích :
Bài 16: Trong không gian với hệ tọa độ Oxyz, cho A→ (-2;2;-1), B→ (-2;3;0), C→ (x;3;-1). Giá trị của x để tam giác ABC đều là:
A. x=-1 B. x=-3
C. D. x=1
Lời giải:
Đáp án : C
Giải thích :
AB→ =(0;1;1); AC→ =(x+2;1;0); BC→ =(x+2;0;-1)
Tam giác ABC đều ⇔ BACˆ= ABCˆ=600
Khi đó:
⇔(x+2)2 + 1=2⇔(x+2)2=1
Bài 17: Cho hai vecto a→; b→ tạo với nhau một góc 600. Biết độ dài của hai vecto đó lần lượt là 5 và 10. Độ dài của vecto hiệu a→ - b→ là:
A. 15 B. 5
C. 75 D. √(75)
Lời giải:
Đáp án : D
Giải thích :
Ta có: | a→ - b→ |2=( a→ - b→ )2=| a→ |2+| b→ |2-2| a→ |.| b→ |.cos( a→ ; b→ )
=25+100-2.5.10.cos600 =75
⇒|a→ - b→ |=√75
Bài 18: Trong không gian với hệ tọa độ Oxyz,cho tam giác ABC với A(-4;3;5), B(-3;2;5) và C(5;-3;8). Tính cos(AB→ ; BC→ ).
Lời giải:
Đáp án : C
Giải thích :
AB→ =(1; -1;0); BC→ =(8; -5;3)
Bài 19: Trong không gian với hệ toạ độ Oxyz, tam giác ABC có A(-1;-2;4), B(-4;-2;0), C(3;-2;1). Số đo của góc B là:
A. 450 B. 600
C. 300 D. 1200
Lời giải:
Đáp án : A
Giải thích :
AB→=(-3; 0;-4); BC→=(7; 0;1)
⇒(AB→ ; BC→ )=1350
⇒ Bˆ=450
Bài 20: Trong không gian Oxyz, cho hai điểm A(x; y; z), B(m, n, p) thay đổi nhưng luôn thỏa mãn điều kiện x2+y2+z2=4; m2+n2+p2=9. Vecto AB→ có độ dài nhỏ nhất là:
A. 5 B. 1
C. 13 D. Không tồn tại
Lời giải:
Đáp án : B
Giải thích :
Ta có: OA = 2; OB = 3
AB≤|OA-OB|=1
Dấu bằng xảy ra khi O nằm ngoài đoạn AB.
👉 Giải bài nhanh với AI Hay:- HOT 500+ Đề thi thử tốt nghiệp THPT, ĐGNL các trường ĐH fle word có đáp án (2025).
Sách VietJack thi THPT quốc gia 2026 cho 2k8:
- Sổ tay toán, lý, hóa, văn, sử, địa 12 (29k/ 1 cuốn)
- Tổng ôn tốt nghiệp 12 toán, sử, địa, kinh tế pháp luật.... (80k/1 cuốn)
- 30 đề Đánh giá năng lực đại học quốc gia Hà Nội, tp. Hồ Chí Minh 2026 (cho 2k8)
TÀI LIỆU FILE WORD DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12
+ Bộ giáo án, đề thi tốt nghiệp THPT, DGNL các trường các trường có lời giải chi tiết 2025 tại https://tailieugiaovien.com.vn/
+ Hỗ trợ zalo: VietJack Official
+ Tổng đài hỗ trợ đăng ký : 084 283 45 85
500+ đề thi thử tốt nghiệp THPT Quốc gia form 2025
( 128 tài liệu )
100+ đề thi ĐGNL ĐHQG Hà Nội, Tp.Hồ Chí Minh...
( 84 tài liệu )
Đề thi giữa kì, cuối kì 12
( 143 tài liệu )
Bài giảng Powerpoint Văn, Sử, Địa 12....
( 31 tài liệu )
Chuyên đề dạy thêm Toán, Lí, Hóa ...12
( 104 tài liệu )
Đề thi HSG 12
( 4 tài liệu )
xem tất cảĐã có app VietJack trên điện thoại, giải bài tập SGK, SBT Soạn văn, Văn mẫu, Thi online, Bài giảng....miễn phí. Tải ngay ứng dụng trên Android và iOS.
Theo dõi chúng tôi miễn phí trên mạng xã hội facebook và youtube:
Nếu thấy hay, hãy động viên và chia sẻ nhé! Các bình luận không phù hợp với nội quy bình luận trang web sẽ bị cấm bình luận vĩnh viễn.
Trang trước Trang sau phuong-phap-toa-do-trong-khong-gian.jsp Giải bài tập lớp 12 sách mới các môn học- Giải Tiếng Anh 12 Global Success
- Giải sgk Tiếng Anh 12 Smart World
- Giải sgk Tiếng Anh 12 Friends Global
- Lớp 12 Kết nối tri thức
- Soạn văn 12 (hay nhất) - KNTT
- Soạn văn 12 (ngắn nhất) - KNTT
- Giải sgk Toán 12 - KNTT
- Giải sgk Vật Lí 12 - KNTT
- Giải sgk Hóa học 12 - KNTT
- Giải sgk Sinh học 12 - KNTT
- Giải sgk Lịch Sử 12 - KNTT
- Giải sgk Địa Lí 12 - KNTT
- Giải sgk Giáo dục KTPL 12 - KNTT
- Giải sgk Tin học 12 - KNTT
- Giải sgk Công nghệ 12 - KNTT
- Giải sgk Hoạt động trải nghiệm 12 - KNTT
- Giải sgk Giáo dục quốc phòng 12 - KNTT
- Giải sgk Âm nhạc 12 - KNTT
- Giải sgk Mĩ thuật 12 - KNTT
- Lớp 12 Chân trời sáng tạo
- Soạn văn 12 (hay nhất) - CTST
- Soạn văn 12 (ngắn nhất) - CTST
- Giải sgk Toán 12 - CTST
- Giải sgk Vật Lí 12 - CTST
- Giải sgk Hóa học 12 - CTST
- Giải sgk Sinh học 12 - CTST
- Giải sgk Lịch Sử 12 - CTST
- Giải sgk Địa Lí 12 - CTST
- Giải sgk Giáo dục KTPL 12 - CTST
- Giải sgk Tin học 12 - CTST
- Giải sgk Hoạt động trải nghiệm 12 - CTST
- Giải sgk Âm nhạc 12 - CTST
- Lớp 12 Cánh diều
- Soạn văn 12 Cánh diều (hay nhất)
- Soạn văn 12 Cánh diều (ngắn nhất)
- Giải sgk Toán 12 Cánh diều
- Giải sgk Vật Lí 12 - Cánh diều
- Giải sgk Hóa học 12 - Cánh diều
- Giải sgk Sinh học 12 - Cánh diều
- Giải sgk Lịch Sử 12 - Cánh diều
- Giải sgk Địa Lí 12 - Cánh diều
- Giải sgk Giáo dục KTPL 12 - Cánh diều
- Giải sgk Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 - Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 - Cánh diều
- Giải sgk Giáo dục quốc phòng 12 - Cánh diều
- Giải sgk Âm nhạc 12 - Cánh diều
Từ khóa » Tích Vô Hướng Ab.ac
-
Giải Toán 10 Bài 2. Tích Vô Hướng Cảu Hai Vectơ
-
Tích Vô Hướng Của Hai Vecto, Trắc Nghiệm Toán Học Lớp 10 - Baitap123
-
Tích Vô Hướng Của Hai Vectơ – Sách Bài Tập Toán 10 – Bài Tập Hình Học
-
Chuyên đề 2 Tích Vô Hướng Của Hai Vecto Và ứng Dụng - SlideShare
-
Cho Tam Giác đều ABC Có Cạnh Bằng A. Tính Tích Vô Hướng Vecto AB ...
-
Cho Tam Giác đều ABC Có Cạnh Bằng A. Tính Tích Vô Hướng Vecto AB ...
-
Xác định Biểu Thức Tích Vô Hướng, Góc Giữa Hai Vectơ
-
Lý Thuyết Tích Vô Hướng Của Hai Vectơ | SGK Toán Lớp 10
-
[PDF] 2 Tích Vô Hƣớng Của Hai Vectơ
-
Trong Mặt Phẳng Tọa độ Oxy, Cho Ba điểm A(3;-1);B(2
-
Tích Vô Hướng Của Hai Vectơ: Lý Thuyết Và Bài Các Dạng Bài Tập ...
-
PP GIẢI BÀI TẬP TÍCH VÔ HƯỚNG - PDF Free Download - DocPlayer
-
[PDF] Bài 2 : TÍCH VÔ HƯỚNG CỦA HAI VECTƠ