CryoDRGN2 - ICCV 2021 Open Access Repository

ICCV 2021 CVF ICCV 2021 open access These ICCV 2021 papers are the Open Access versions, provided by the Computer Vision Foundation. Except for the watermark, they are identical to the accepted versions; the final published version of the proceedings is available on IEEE Xplore. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright.

Powered by:

Microsoft Azure

Sponsored by:

Amazon Facebook Google CryoDRGN2: Ab Initio Neural Reconstruction of 3D Protein Structures From Real Cryo-EM Images Ellen D. Zhong, Adam Lerer, Joseph H. Davis, Bonnie Berger; Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021, pp. 4066-4075 Abstract Protein structure determination from cryo-EM data requires reconstructing a 3D volume (or distribution of volumes) from many noisy and randomly oriented 2D projection images. While the standard homogeneous reconstruction task aims to recover a single static structure, recently-proposed neural and non-neural methods can reconstruct distributions of structures, thereby enabling the study of protein complexes that possess intrinsic structural or conformational heterogeneity. These heterogeneous reconstruction methods, however, require fixed image poses, which are typically estimated from an upstream homogeneous reconstruction and are not guaranteed to be accurate under highly heterogeneous conditions. In this work we describe cryoDRGN2, an ab initio reconstruction algorithm, which can jointly estimate image poses and learn a neural model of a distribution of 3D structures on real heterogeneous cryo-EM data. To achieve this, we adapt search algorithms from the traditional cryo-EM literature, and describe the optimizations and design choices required to make such a search procedure computationally tractable in the neural model setting. We show that cryoDRGN2 is robust to the high noise levels of real cryo-EM images, trains faster than earlier neural methods, and achieves state-of-the-art performance on real cryo-EM datasets. Related Material [pdf] [supp] [bibtex] @InProceedings{Zhong_2021_ICCV, author = {Zhong, Ellen D. and Lerer, Adam and Davis, Joseph H. and Berger, Bonnie}, title = {CryoDRGN2: Ab Initio Neural Reconstruction of 3D Protein Structures From Real Cryo-EM Images}, booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)}, month = {October}, year = {2021}, pages = {4066-4075} }

Từ khóa » êm 2021