The Curtius rearrangement (or Curtius reaction or Curtius degradation), first defined by Theodor Curtius in 1885, is the thermal decomposition of an acyl azide to an isocyanate with loss of nitrogen gas.[1][2] The isocyanate then undergoes attack by a variety of nucleophiles such as water, alcohols and amines, to yield a primary amine, carbamate or urea derivative respectively.[3] Several reviews have been published.[4][5]
Summary scheme of the Curtius rearrangement
Reaction mechanism
[edit]
It was believed that the Curtius rearrangement was a two-step processes, with the loss of nitrogen gas forming an acyl nitrene, followed by migration of the R-group to give the isocyanate. However, recent research has indicated that the thermal decomposition is a concerted process,[6] with both steps happening together, due to the absence of any nitrene insertion or addition byproducts observed or isolated in the reaction.[7] Thermodynamic calculations also support a concerted mechanism.[8]
Mechanism of the Curtius rearrangement
The migration occurs with full retention of configuration at the R-group. The migratory aptitude of the R-group is roughly tertiary > secondary ~ aryl > primary. The isocyanate formed can then be hydrolyzed to give a primary amine, or undergo nucleophilic attack with alcohols and amines to form carbamates and urea derivatives respectively.
Modifications
[edit]
Research has shown that the Curtius rearrangement is catalyzed by both Brønsted[9] and Lewis acids, via the protonation of, or coordination to the acyl oxygen atom respectively. For example, Fahr and Neumann have shown that the use of boron trifluoride or boron trichloride catalyst reduces the decomposition temperature needed for rearrangement by about 100 °C, and increases the yield of the isocyanate significantly.[10]
Photochemical rearrangement
[edit]Mechanism of the photochemical Curtius rearrangement
Photochemical decomposition of the acyl azide is also possible.[11] However, photochemical rearrangement is not concerted and instead occurs by a nitrene intermediate, formed by the cleavage of the weak N–N bond and the loss of nitrogen gas. The highly reactive nitrene can undergo a variety of nitrene reactions, such as nitrene insertion and addition, giving unwanted side products.[12] In the example below, the nitrene intermediate inserts into one of the C–H bonds of the cyclohexane solvent to form N-cyclohexylbenzamide as a side product.
Insertion of nitrene formed by photochemical Curtius rearrangement
Variations
[edit]
Darapsky degradation
[edit]
In one variation called the Darapsky degradation,[13] or Darapsky synthesis, a Curtius rearrangement takes place as one of the steps in the conversion of an α-cyanoester to an amino acid. Hydrazine is used to convert the ester to an acylhydrazine, which is reacted with nitrous acid to give the acyl azide. Heating the azide in ethanol yields the ethyl carbamate via the Curtius rearrangement. Acid hydrolysis yields the amine from the carbamate and the carboxylic acid from the nitrile simultaneously, giving the product amino acid.[14]
Scheme of the Darapsky amino acid synthesis
Harger reaction
[edit]
The photochemical Curtius-like migration and rearrangement of a phosphinic azide forms a metaphosphonimidate[15] in what is also known as the Harger reaction (named after Dr Martin Harger from University of Leicester).[16] This is followed by hydrolysis, in the example below with methanol, to give a phosphonamidate.
Scheme of the Harger reaction
Unlike the Curtius rearrangement, there is a choice of R-groups on the phosphinic azide which can migrate. Harger has found that the alkyl groups migrate preferentially to aryl groups, and this preference increases in the order methyl < primary < secondary < tertiary. This is probably due to steric and conformational factors, as the bulkier the R-group, the less favorable the conformation for phenyl migration.[16]
Synthetic applications
[edit]
The Curtius rearrangement is tolerant of a large variety of functional groups, and has significant synthetic utility, as many different groups can be incorporated depending on the choice of nucleophile used to attack the isocyanate.
For example, when carried out in the presence of tert-butanol, the reaction generates Boc-protected amines, useful intermediates in organic synthesis.[17][18] Likewise, when the Curtius reaction is performed in the presence of benzyl alcohol, Cbz-protected amines are formed.[19]
Triquinacene
[edit]
R. B. Woodward et al. used the Curtius rearrangement as one of the steps in the total synthesis of the polyquinane triquinacene in 1964. Following hydrolysis of the ester in the intermediate (1), a Curtius rearrangement was effected to convert the carboxylic acid groups in (2) to the methyl carbamate groups (3) with 84% yield. Further steps then gave triquinacene (4).[20]
The Curtius reaction in Woodward's total synthesis of triquinacene
Oseltamivir
[edit]
In their synthesis of the antiviral drug oseltamivir, also known as Tamiflu, Ishikawa et al. used the Curtius rearrangement in one of the key steps in converting the acyl azide to the amide group in the target molecule. In this case, the isocyanate formed by the rearrangement is attacked by a carboxylic acid to form the amide. Subsequent reactions could all be carried out in the same reaction vessel to give the final product with 57% overall yield. An important benefit of the Curtius reaction highlighted by the authors was that it could be carried out at room temperature, minimizing the hazard from heating. The scheme overall was highly efficient, requiring only three “one-pot” operations to produce this important and valuable drug used for the treatment of avian influenza.[21]
The Curtius rearrangement in the Ishikawa total synthesis of oseltamivir
Dievodiamine
[edit]
Dievodiamine is a natural product from the plant Euodia ruticarpa, which is widely used in traditional Chinese medicine. Unsworth et al.’s protecting group-free total synthesis of dievodiamine utilizes the Curtius rearrangement in the first step of the synthesis, catalyzed by boron trifluoride. The activated isocyanate then quickly reacts with the indole ring in an electrophilic aromatic substitution reaction to give the amide in 94% yield, and subsequent steps give dievodamine.[22]
The Curtius rearrangement in the total synthesis of Dievodiamine
See also
[edit]
Beckmann rearrangement
Bergmann degradation
Hofmann rearrangement
Lossen rearrangement
Schmidt reaction
Tiemann rearrangement
Neber rearrangement
Wolff rearrangement
References
[edit]
^Curtius, Th. (1890). "Ueber Stickstoffwasserstoffsäure (Azoimid) N3H" [On hydrazoic acid (azoimide) N3H]. Berichte der Deutschen Chemischen Gesellschaft zu Berlin. 23 (2): 3023–3033. doi:10.1002/cber.189002302232.
^Curtius, T. (1894). "20. Hydrazide und Azide organischer Säuren I. Abhandlung" [Hydrazides and azides of organic acids I. paper]. Journal für Praktische Chemie. 50: 275–294. doi:10.1002/prac.18940500125.
^Kaiser, C.; Weinstock, J. (1988). "Amines from mixed carboxylic-carbonic anhydrides: 1-phenylcyclopentylamine". Organic Syntheses; Collected Volumes, vol. 6, p. 910.
^Smith, P. A. S. (1946). "The Curtius reaction". Organic Reactions. 3: 337–449.
^Scriven, Eric F. V.; Turnbull, Kenneth (1988). "Azides: their preparation and synthetic uses". Chemical Reviews. 88 (2): 297–368. doi:10.1021/cr00084a001.
^Carey, Francis A.; Sundberg, Richard J. (2007). Advanced Organic Chemistry: Part B: Reactions and Synthesis (5th ed.). New York: Springer. p. 948. ISBN 978-0387683546.
^Rauk, A.; Alewood, P. F. (1977). "A theoretical study of the Curtius rearrangement. The electronic structures and interconversion of the CHNO species". Can. J. Chem. 55 (9): 1498–1510. doi:10.1139/v77-209.
^L'Abbe, G. (1969). "Decomposition and addition reactions of organic azides". Chem. Rev. 69 (3): 345–363. doi:10.1021/cr60259a004.
^Yukawa, Y.; Tsuno, Y. (1959). "The decomposition of substituted benzazides in acidic solvents, the acid catalysis". J. Am. Chem. Soc. 81: 2007–2012. doi:10.1021/ja01517a055.
^Fahr, E.; Neumann, L. (1965). "Curtius-Reaktion mit Bortrihalogeniden". Angew. Chem. 77 (13): 591. Bibcode:1965AngCh..77..591F. doi:10.1002/ange.19650771308.
^Wentrup, C.; Bornemann, H. (2005). "Curtius rearrangment of acyl azides revisited - formation of cyanate". Eur. J. Org. Chem.: 4521–4524. doi:10.1002/ejoc.200500545.
^Eibler, E.; Sauer, J. (1974). "Ein Betrag zur Isocyanatbildung bei der Photolyse von Acylaziden". Tetrahedron Lett. 15 (30): 2569–2572. doi:10.1016/s0040-4039(01)92295-6.
^August Darapsky (1936) "Darstellung von α-Aminosäuren aus Alkyl-cyanessigsäuren" (Preparation of α-amino acids from alkyl cyanoacetic acids), Journal für Praktische Chemie, 146 : 250-267.
^Gagnon, P. E.; Bovin, P. A.; Craig, H. M. (1951). "Synthesis of amino acids from substituted cyanoacetic esters". Can. J. Chem. 29: 70–75. doi:10.1139/cjc-29-1-70.
^Bertrand, G.; Majoral, J.; Baceiredo, A. (1980). "Photolytic rearrangement of phosphorus azide: evidence for a transient metaphosphonimidate". Tetrahedron Lett. 21 (52): 5015–5018. doi:10.1016/s0040-4039(00)71119-1.
^ abHarger, M. J. P.; Westlake, S. (1982). "Photolysis of some unsymmetrical phosphinic azides in methanol". Tetrahedron. 38 (20): 3073–3078. doi:10.1016/0040-4020(82)80195-6.
^Am Ende, David J.; Devries, Keith M.; Clifford, Pamela J.; Brenek, Steven J. (1998). "A Calorimetric Investigation to Safely Scale-Up a Curtius Rearrangement of Acryloyl Azide". Organic Process Research & Development. 2 (6): 382–392. doi:10.1021/op970115w.
^Lebel, H.; Leogane, O. (2005). "Boc-protected amines via a mild and efficient one-pot Curtius rearrangement". Organic Letters. 7 (19): 4107–4110. doi:10.1021/ol051428b. PMID 16146363.
^Jessup, P. J.; Petty, C. B.; Roos, J.; Overman, L. E. (1988). "1-N-Acylamino-1,3-dienes from 2,4-pentadienoic acids by the Curtius rearrangement: benzyl trans-1,3-butadiene-1-carbamate". Organic Syntheses; Collected Volumes, vol. 6, p. 95.
^Woodward, R. B.; Fukunaga, T.; Kelly, R. C. (1964). "Triquinacene". J. Am. Chem. Soc. 86 (15): 3162–3164. doi:10.1021/ja01069a046.
^Ishikawa, H.; Suzuki, T.; Hayashi, Y. (2009). "High-yielding synthesis of the anti-influenza neuramidase inhibitor (-)-oseltamivir by three "one-pot" operations". Angew. Chem. Int. Ed. 48 (7): 1304–1307. doi:10.1002/anie.200804883. PMID 19123206.
^Unsworth, William P.; Kitsiou, Christiana; Taylor, Richard J. K. (5 July 2013). "An Expedient Protecting-Group-Free Total Synthesis of (±)-Dievodiamine". Organic Letters. 15 (13): 3302–3305. doi:10.1021/ol4013469. PMID 23786450.
External links
[edit] Wikimedia Commons has media related to Curtius rearrangement.
"Mechanism In Motion: Curtius rearrangement". YouTube. 24 August 2010.
v
t
e
Topics in organic reactions
Addition reaction
Elimination reaction
Polymerization
Reagents
Rearrangement reaction
Redox reaction
Regioselectivity
Stereoselectivity
Stereospecificity
Substitution reaction
A value
Alpha effect
Annulene
Anomeric effect
Antiaromaticity
Aromatic ring current
Aromaticity
Baird's rule
Baker–Nathan effect
Baldwin's rules
Bema Hapothle
Beta-silicon effect
Bicycloaromaticity
Bredt's rule
Bürgi–Dunitz angle
Catalytic resonance theory
Charge remote fragmentation
Charge-transfer complex
Clar's rule
Conformational isomerism
Conjugated system
Conrotatory and disrotatory
Curtin–Hammett principle
Dynamic binding (chemistry)
Edwards equation
Effective molarity
Electromeric effect
Electron-rich
Electron-withdrawing group
Electronic effect
Electrophile
Evelyn effect
Flippin–Lodge angle
Free-energy relationship
Grunwald–Winstein equation
Hammett acidity function
Hammett equation
George S. Hammond
Hammond's postulate
Homoaromaticity
Hückel's rule
Hyperconjugation
Inductive effect
Kinetic isotope effect
LFER solvent coefficients (data page)
Marcus theory
Markovnikov's rule
Möbius aromaticity
Möbius–Hückel concept
More O'Ferrall–Jencks plot
Negative hyperconjugation
Neighbouring group participation
2-Norbornyl cation
Nucleophile
Kennedy J. P. Orton
Passive binding
Phosphaethynolate
Polar effect
Polyfluorene
Ring strain
Σ-aromaticity
Spherical aromaticity
Spiroaromaticity
Steric effects
Superaromaticity
Swain–Lupton equation
Taft equation
Thorpe–Ingold effect
Vinylogy
Walsh diagram
Woodward–Hoffmann rules
Woodward's rules
Y-aromaticity
Yukawa–Tsuno equation
Zaitsev's rule
Σ-bishomoaromaticity
List of organic reactions
Carbon-carbon bond forming reactions
Acetoacetic ester synthesis
Acyloin condensation
Aldol condensation
Aldol reaction
Alkane metathesis
Alkyne metathesis
Alkyne trimerisation
Alkynylation
Allan–Robinson reaction
Arndt–Eistert reaction
Auwers synthesis
Aza-Baylis–Hillman reaction
Barbier reaction
Barton–Kellogg reaction
Baylis–Hillman reaction
Benary reaction
Bergman cyclization
Biginelli reaction
Bingel reaction
Blaise ketone synthesis
Blaise reaction
Blanc chloromethylation
Bodroux–Chichibabin aldehyde synthesis
Bouveault aldehyde synthesis
Bucherer–Bergs reaction
Buchner ring expansion
Cadiot–Chodkiewicz coupling
Carbonyl allylation
Carbonyl olefin metathesis
Castro–Stephens coupling
Chan rearrangement
Chan–Lam coupling
Claisen condensation
Claisen rearrangement
Claisen-Schmidt condensation
Combes quinoline synthesis
Corey–Fuchs reaction
Corey–House synthesis
Coupling reaction
Cross-coupling reaction
Cross dehydrogenative coupling
Cross-coupling partner
Dakin–West reaction
Darzens reaction
Diels–Alder reaction
Doebner reaction
Wulff–Dötz reaction
Ene reaction
Enyne metathesis
Ethenolysis
Favorskii reaction
Ferrier carbocyclization
Friedel–Crafts reaction
Fujimoto–Belleau reaction
Fujiwara–Moritani reaction
Fukuyama coupling
Gabriel–Colman rearrangement
Gattermann reaction
Glaser coupling
Grignard reaction
Grignard reagent
Hammick reaction
Heck reaction
Henry reaction
Heterogeneous metal catalyzed cross-coupling
High dilution principle
Hiyama coupling
Homologation reaction
Horner–Wadsworth–Emmons reaction
Hydrocyanation
Hydrovinylation
Hydroxymethylation
Ivanov reaction
Johnson–Corey–Chaykovsky reaction
Julia olefination
Julia–Kocienski olefination
Kauffmann olefination
Knoevenagel condensation
Knorr pyrrole synthesis
Kolbe–Schmitt reaction
Kowalski ester homologation
Kulinkovich reaction
Kumada coupling
Liebeskind–Srogl coupling
Malonic ester synthesis
Mannich reaction
McMurry reaction
Meerwein arylation
Methylenation
Michael reaction
Minisci reaction
Mizoroki-Heck vs. Reductive Heck
Nef isocyanide reaction
Nef synthesis
Negishi coupling
Nierenstein reaction
Nitro-Mannich reaction
Nozaki–Hiyama–Kishi reaction
Olefin conversion technology
Olefin metathesis
Palladium–NHC complex
Passerini reaction
Peterson olefination
Pfitzinger reaction
Piancatelli rearrangement
Pinacol coupling reaction
Prins reaction
Quelet reaction
Ramberg–Bäcklund reaction
Rauhut–Currier reaction
Reformatsky reaction
Reimer–Tiemann reaction
Rieche formylation
Ring-closing metathesis
Robinson annulation
Sakurai reaction
Seyferth–Gilbert homologation
Shapiro reaction
Sonogashira coupling
Stetter reaction
Stille reaction
Stollé synthesis
Stork enamine alkylation
Suzuki reaction
Takai olefination
Thermal rearrangement of aromatic hydrocarbons
Thorpe reaction
Ugi reaction
Ullmann reaction
Wagner-Jauregg reaction
Weinreb ketone synthesis
Wittig reaction
Wurtz reaction
Wurtz–Fittig reaction
Zincke–Suhl reaction
Homologation reactions
Arndt–Eistert reaction
Hooker reaction
Kiliani–Fischer synthesis
Kowalski ester homologation
Methoxymethylenetriphenylphosphorane
Seyferth–Gilbert homologation
Wittig reaction
Olefination reactions
Bamford–Stevens reaction
Barton–Kellogg reaction
Boord olefin synthesis
Chugaev elimination
Cope reaction
Corey–Winter olefin synthesis
Dehydrohalogenation
Elimination reaction
Grieco elimination
Hofmann elimination
Horner–Wadsworth–Emmons reaction
Hydrazone iodination
Julia olefination
Julia–Kocienski olefination
Kauffmann olefination
McMurry reaction
Peterson olefination
Ramberg–Bäcklund reaction
Shapiro reaction
Takai olefination
Wittig reaction
Carbon-heteroatom bond forming reactions
Azo coupling
Bartoli indole synthesis
Boudouard reaction
Cadogan–Sundberg indole synthesis
Diazonium compound
Esterification
Grignard reagent
Haloform reaction
Hegedus indole synthesis
Hurd–Mori 1,2,3-thiadiazole synthesis
Kharasch–Sosnovsky reaction
Knorr pyrrole synthesis
Leimgruber–Batcho indole synthesis
Mukaiyama hydration
Nenitzescu indole synthesis
Oxymercuration reaction
Reed reaction
Schotten–Baumann reaction
Ullmann condensation
Williamson ether synthesis
Yamaguchi esterification
Degradation reactions
Barbier–Wieland degradation
Bergmann degradation
Edman degradation
Emde degradation
Gallagher–Hollander degradation
Hofmann rearrangement
Hooker reaction
Isosaccharinic acid
Marker degradation
Ruff degradation
Strecker degradation
Von Braun amide degradation
Weerman degradation
Wohl degradation
Organic redox reactions
Acyloin condensation
Adkins–Peterson reaction
Akabori amino-acid reaction
Alcohol oxidation
Algar–Flynn–Oyamada reaction
Amide reduction
Andrussow process
Angeli–Rimini reaction
Aromatization
Autoxidation
Baeyer–Villiger oxidation
Barton–McCombie deoxygenation
Bechamp reduction
Benkeser reaction
Bergmann degradation
Birch reduction
Bohn–Schmidt reaction
Bosch reaction
Bouveault–Blanc reduction
Boyland–Sims oxidation
Cannizzaro reaction
Carbonyl reduction
Clemmensen reduction
Collins oxidation
Corey–Itsuno reduction
Corey–Kim oxidation
Corey–Winter olefin synthesis
Criegee oxidation
Dakin oxidation
Davis oxidation
Deoxygenation
Dess–Martin oxidation
DNA oxidation
Elbs persulfate oxidation
Emde degradation
Eschweiler–Clarke reaction
Étard reaction
Fischer–Tropsch process
Fleming–Tamao oxidation
Fukuyama reduction
Ganem oxidation
Glycol cleavage
Griesbaum coozonolysis
Grundmann aldehyde synthesis
Haloform reaction
Hydrogenation
Hydrogenolysis
Hydroxylation
Jones oxidation
Kiliani–Fischer synthesis
Kolbe electrolysis
Kornblum oxidation
Kornblum–DeLaMare rearrangement
Leuckart reaction
Ley oxidation
Lindgren oxidation
Lipid peroxidation
Lombardo methylenation
Luche reduction
Markó–Lam deoxygenation
McFadyen–Stevens reaction
Meerwein–Ponndorf–Verley reduction
Methionine sulfoxide
Miyaura borylation
Mozingo reduction
Noyori asymmetric hydrogenation
Omega oxidation
Oppenauer oxidation
Oxygen rebound mechanism
Ozonolysis
Parikh–Doering oxidation
Pinnick oxidation
Prévost reaction
Reduction of nitro compounds
Reductive amination
Riley oxidation
Rosenmund reduction
Rubottom oxidation
Sabatier reaction
Sarett oxidation
Selenoxide elimination
Shapiro reaction
Sharpless asymmetric dihydroxylation
Epoxidation of allylic alcohols
Sharpless epoxidation
Sharpless oxyamination
Stahl oxidation
Staudinger reaction
Stephen aldehyde synthesis
Swern oxidation
Transfer hydrogenation
Wacker process
Wharton reaction
Whiting reaction
Wohl–Aue reaction
Wolff–Kishner reduction
Wolffenstein–Böters reaction
Zinin reaction
Rearrangement reactions
1,2-rearrangement
1,2-Wittig rearrangement
2,3-sigmatropic rearrangement
2,3-Wittig rearrangement
Achmatowicz reaction
Alkyne zipper reaction
Allen–Millar–Trippett rearrangement
Allylic rearrangement
Alpha-ketol rearrangement
Amadori rearrangement
Arndt–Eistert reaction
Aza-Cope rearrangement
Baker–Venkataraman rearrangement
Bamberger rearrangement
Banert cascade
Beckmann rearrangement
Benzilic acid rearrangement
Bergman cyclization
Bergmann degradation
Boekelheide reaction
Brook rearrangement
Buchner ring expansion
Carroll rearrangement
Chan rearrangement
Claisen rearrangement
Cope rearrangement
Corey–Fuchs reaction
Cornforth rearrangement
Criegee rearrangement
Curtius rearrangement
Demjanov rearrangement
Di-π-methane rearrangement
Dimroth rearrangement
Divinylcyclopropane-cycloheptadiene rearrangement
Dowd–Beckwith ring-expansion reaction
Electrocyclic reaction
Ene reaction
Enyne metathesis
Favorskii reaction
Favorskii rearrangement
Ferrier carbocyclization
Ferrier rearrangement
Fischer–Hepp rearrangement
Fries rearrangement
Fritsch–Buttenberg–Wiechell rearrangement
Gabriel–Colman rearrangement
Group transfer reaction
Halogen dance rearrangement
Hayashi rearrangement
Hofmann rearrangement
Hofmann–Martius rearrangement
Ireland–Claisen rearrangement
Jacobsen rearrangement
Kornblum–DeLaMare rearrangement
Kowalski ester homologation
Lobry de Bruyn–Van Ekenstein transformation
Lossen rearrangement
McFadyen–Stevens reaction
McLafferty rearrangement
Meyer–Schuster rearrangement
Mislow–Evans rearrangement
Mumm rearrangement
Myers allene synthesis
Nazarov cyclization reaction
Neber rearrangement
Newman–Kwart rearrangement
Overman rearrangement
Oxy-Cope rearrangement
Pericyclic reaction
Piancatelli rearrangement
Pinacol rearrangement
Pummerer rearrangement
Ramberg–Bäcklund reaction
Ring expansion and contraction
Ring-closing metathesis
Rupe reaction
Schmidt reaction
Semipinacol rearrangement
Seyferth–Gilbert homologation
Sigmatropic reaction
Skattebøl rearrangement
Smiles rearrangement
Sommelet–Hauser rearrangement
Stevens rearrangement
Stieglitz rearrangement
Thermal rearrangement of aromatic hydrocarbons
Tiffeneau–Demjanov rearrangement
Vinylcyclopropane rearrangement
Wagner–Meerwein rearrangement
Wallach rearrangement
Weerman degradation
Westphalen–Lettré rearrangement
Willgerodt rearrangement
Wolff rearrangement
Ring forming reactions
1,3-Dipolar cycloaddition
Annulation
Azide-alkyne Huisgen cycloaddition
Baeyer–Emmerling indole synthesis
Bartoli indole synthesis
Bergman cyclization
Biginelli reaction
Bischler–Möhlau indole synthesis
Bischler–Napieralski reaction
Blum–Ittah aziridine synthesis
Bobbitt reaction
Bohlmann–Rahtz pyridine synthesis
Borsche–Drechsel cyclization
Bucherer carbazole synthesis
Bucherer–Bergs reaction
Cadogan–Sundberg indole synthesis
Camps quinoline synthesis
Chichibabin pyridine synthesis
Cook–Heilbron thiazole synthesis
Cycloaddition
Darzens reaction
Davis–Beirut reaction
De Kimpe aziridine synthesis
Debus–Radziszewski imidazole synthesis
Dieckmann condensation
Diels–Alder reaction
Feist–Benary synthesis
Ferrario–Ackermann reaction
Fiesselmann thiophene synthesis
Fischer indole synthesis
Fischer oxazole synthesis
Friedländer synthesis
Gewald reaction
Graham reaction
Hantzsch pyridine synthesis
Hegedus indole synthesis
Hemetsberger indole synthesis
Hofmann–Löffler reaction
Hurd–Mori 1,2,3-thiadiazole synthesis
Iodolactonization
Isay reaction
Jacobsen epoxidation
Johnson–Corey–Chaykovsky reaction
Knorr pyrrole synthesis
Knorr quinoline synthesis
Kröhnke pyridine synthesis
Kulinkovich reaction
Larock indole synthesis
Madelung synthesis
Nazarov cyclization reaction
Nenitzescu indole synthesis
Niementowski quinazoline synthesis
Niementowski quinoline synthesis
Paal–Knorr synthesis
Paternò–Büchi reaction
Pechmann condensation
Petrenko-Kritschenko piperidone synthesis
Pictet–Spengler reaction
Pomeranz–Fritsch reaction
Prilezhaev reaction
Pschorr cyclization
Reissert indole synthesis
Ring-closing metathesis
Robinson annulation
Sharpless epoxidation
Simmons–Smith reaction
Skraup reaction
Urech hydantoin synthesis
Van Leusen reaction
Wenker synthesis
Cycloaddition
1,3-Dipolar cycloaddition
4+4 Photocycloaddition
(4+3) cycloaddition
6+4 Cycloaddition
Alkyne trimerisation
Aza-Diels–Alder reaction
Azide-alkyne Huisgen cycloaddition
Bradsher cycloaddition
Cheletropic reaction
Conia-ene reaction
Cyclopropanation
Diazoalkane 1,3-dipolar cycloaddition
Diels–Alder reaction
Enone–alkene cycloadditions
Hexadehydro Diels–Alder reaction
Intramolecular Diels–Alder cycloaddition
Inverse electron-demand Diels–Alder reaction
Ketene cycloaddition
McCormack reaction
Metal-centered cycloaddition reactions
Nitrone-olefin (3+2) cycloaddition
Oxo-Diels–Alder reaction
Ozonolysis
Pauson–Khand reaction
Povarov reaction
Prato reaction
Retro-Diels–Alder reaction
Staudinger synthesis
Trimethylenemethane cycloaddition
Vinylcyclopropane (5+2) cycloaddition
Wagner-Jauregg reaction
Heterocycle forming reactions
Algar–Flynn–Oyamada reaction
Allan–Robinson reaction
Auwers synthesis
Bamberger triazine synthesis
Banert cascade
Barton–Zard reaction
Bernthsen acridine synthesis
Bischler–Napieralski reaction
Bobbitt reaction
Boger pyridine synthesis
Borsche–Drechsel cyclization
Bucherer carbazole synthesis
Bucherer–Bergs reaction
Chichibabin pyridine synthesis
Cook–Heilbron thiazole synthesis
Diazoalkane 1,3-dipolar cycloaddition
Einhorn–Brunner reaction
Erlenmeyer–Plöchl azlactone and amino-acid synthesis