Curtius Rearrangement - Wikipedia

Chemical reaction
Curtius rearrangement
Named after Theodor Curtius
Reaction type Rearrangement reaction
Identifiers
Organic Chemistry Portal curtius-rearrangement
RSC ontology ID RXNO:0000054

The Curtius rearrangement (or Curtius reaction or Curtius degradation), first defined by Theodor Curtius in 1885, is the thermal decomposition of an acyl azide to an isocyanate with loss of nitrogen gas.[1][2] The isocyanate then undergoes attack by a variety of nucleophiles such as water, alcohols and amines, to yield a primary amine, carbamate or urea derivative respectively.[3] Several reviews have been published.[4][5]

Summary scheme of the Curtius rearrangement
Summary scheme of the Curtius rearrangement

Reaction mechanism

[edit]

It was believed that the Curtius rearrangement was a two-step processes, with the loss of nitrogen gas forming an acyl nitrene, followed by migration of the R-group to give the isocyanate. However, recent research has indicated that the thermal decomposition is a concerted process,[6] with both steps happening together, due to the absence of any nitrene insertion or addition byproducts observed or isolated in the reaction.[7] Thermodynamic calculations also support a concerted mechanism.[8]

Mechanism of the Curtius rearrangement

The migration occurs with full retention of configuration at the R-group. The migratory aptitude of the R-group is roughly tertiary > secondary ~ aryl > primary. The isocyanate formed can then be hydrolyzed to give a primary amine, or undergo nucleophilic attack with alcohols and amines to form carbamates and urea derivatives respectively.

Modifications

[edit]

Research has shown that the Curtius rearrangement is catalyzed by both Brønsted[9] and Lewis acids, via the protonation of, or coordination to the acyl oxygen atom respectively. For example, Fahr and Neumann have shown that the use of boron trifluoride or boron trichloride catalyst reduces the decomposition temperature needed for rearrangement by about 100 °C, and increases the yield of the isocyanate significantly.[10]

Photochemical rearrangement

[edit]
Mechanism of the photochemical Curtius rearrangement

Photochemical decomposition of the acyl azide is also possible.[11] However, photochemical rearrangement is not concerted and instead occurs by a nitrene intermediate, formed by the cleavage of the weak N–N bond and the loss of nitrogen gas. The highly reactive nitrene can undergo a variety of nitrene reactions, such as nitrene insertion and addition, giving unwanted side products.[12] In the example below, the nitrene intermediate inserts into one of the C–H bonds of the cyclohexane solvent to form N-cyclohexylbenzamide as a side product.

Insertion of nitrene formed by photochemical Curtius rearrangement
Insertion of nitrene formed by photochemical Curtius rearrangement

Variations

[edit]

Darapsky degradation

[edit]

In one variation called the Darapsky degradation,[13] or Darapsky synthesis, a Curtius rearrangement takes place as one of the steps in the conversion of an α-cyanoester to an amino acid. Hydrazine is used to convert the ester to an acylhydrazine, which is reacted with nitrous acid to give the acyl azide. Heating the azide in ethanol yields the ethyl carbamate via the Curtius rearrangement. Acid hydrolysis yields the amine from the carbamate and the carboxylic acid from the nitrile simultaneously, giving the product amino acid.[14]

Scheme of the Darapsky amino acid synthesis
Scheme of the Darapsky amino acid synthesis

Harger reaction

[edit]

The photochemical Curtius-like migration and rearrangement of a phosphinic azide forms a metaphosphonimidate[15] in what is also known as the Harger reaction (named after Dr Martin Harger from University of Leicester).[16] This is followed by hydrolysis, in the example below with methanol, to give a phosphonamidate.

Scheme of the Harger reaction
Scheme of the Harger reaction

Unlike the Curtius rearrangement, there is a choice of R-groups on the phosphinic azide which can migrate. Harger has found that the alkyl groups migrate preferentially to aryl groups, and this preference increases in the order methyl < primary < secondary < tertiary. This is probably due to steric and conformational factors, as the bulkier the R-group, the less favorable the conformation for phenyl migration.[16]

Synthetic applications

[edit]

The Curtius rearrangement is tolerant of a large variety of functional groups, and has significant synthetic utility, as many different groups can be incorporated depending on the choice of nucleophile used to attack the isocyanate.

For example, when carried out in the presence of tert-butanol, the reaction generates Boc-protected amines, useful intermediates in organic synthesis.[17][18] Likewise, when the Curtius reaction is performed in the presence of benzyl alcohol, Cbz-protected amines are formed.[19]

Triquinacene

[edit]

R. B. Woodward et al. used the Curtius rearrangement as one of the steps in the total synthesis of the polyquinane triquinacene in 1964. Following hydrolysis of the ester in the intermediate (1), a Curtius rearrangement was effected to convert the carboxylic acid groups in (2) to the methyl carbamate groups (3) with 84% yield. Further steps then gave triquinacene (4).[20]

The Curtius reaction in Woodward's total synthesis of triquinacene
The Curtius reaction in Woodward's total synthesis of triquinacene

Oseltamivir

[edit]

In their synthesis of the antiviral drug oseltamivir, also known as Tamiflu, Ishikawa et al. used the Curtius rearrangement in one of the key steps in converting the acyl azide to the amide group in the target molecule. In this case, the isocyanate formed by the rearrangement is attacked by a carboxylic acid to form the amide. Subsequent reactions could all be carried out in the same reaction vessel to give the final product with 57% overall yield. An important benefit of the Curtius reaction highlighted by the authors was that it could be carried out at room temperature, minimizing the hazard from heating. The scheme overall was highly efficient, requiring only three “one-pot” operations to produce this important and valuable drug used for the treatment of avian influenza.[21]

The Curtius rearrangement in the Ishikawa total synthesis of oseltamivir
The Curtius rearrangement in the Ishikawa total synthesis of oseltamivir

Dievodiamine

[edit]

Dievodiamine is a natural product from the plant Euodia ruticarpa, which is widely used in traditional Chinese medicine. Unsworth et al.’s protecting group-free total synthesis of dievodiamine utilizes the Curtius rearrangement in the first step of the synthesis, catalyzed by boron trifluoride. The activated isocyanate then quickly reacts with the indole ring in an electrophilic aromatic substitution reaction to give the amide in 94% yield, and subsequent steps give dievodamine.[22]

The Curtius rearrangement in the total synthesis of Dievodiamine
The Curtius rearrangement in the total synthesis of Dievodiamine

See also

[edit]
  • Beckmann rearrangement
  • Bergmann degradation
  • Hofmann rearrangement
  • Lossen rearrangement
  • Schmidt reaction
  • Tiemann rearrangement
  • Neber rearrangement
  • Wolff rearrangement

References

[edit]
  1. ^ Curtius, Th. (1890). "Ueber Stickstoffwasserstoffsäure (Azoimid) N3H" [On hydrazoic acid (azoimide) N3H]. Berichte der Deutschen Chemischen Gesellschaft zu Berlin. 23 (2): 3023–3033. doi:10.1002/cber.189002302232.
  2. ^ Curtius, T. (1894). "20. Hydrazide und Azide organischer Säuren I. Abhandlung" [Hydrazides and azides of organic acids I. paper]. Journal für Praktische Chemie. 50: 275–294. doi:10.1002/prac.18940500125.
  3. ^ Kaiser, C.; Weinstock, J. (1988). "Amines from mixed carboxylic-carbonic anhydrides: 1-phenylcyclopentylamine". Organic Syntheses; Collected Volumes, vol. 6, p. 910.
  4. ^ Smith, P. A. S. (1946). "The Curtius reaction". Organic Reactions. 3: 337–449.
  5. ^ Scriven, Eric F. V.; Turnbull, Kenneth (1988). "Azides: their preparation and synthetic uses". Chemical Reviews. 88 (2): 297–368. doi:10.1021/cr00084a001.
  6. ^ Carey, Francis A.; Sundberg, Richard J. (2007). Advanced Organic Chemistry: Part B: Reactions and Synthesis (5th ed.). New York: Springer. p. 948. ISBN 978-0387683546.
  7. ^ Rauk, A.; Alewood, P. F. (1977). "A theoretical study of the Curtius rearrangement. The electronic structures and interconversion of the CHNO species". Can. J. Chem. 55 (9): 1498–1510. doi:10.1139/v77-209.
  8. ^ L'Abbe, G. (1969). "Decomposition and addition reactions of organic azides". Chem. Rev. 69 (3): 345–363. doi:10.1021/cr60259a004.
  9. ^ Yukawa, Y.; Tsuno, Y. (1959). "The decomposition of substituted benzazides in acidic solvents, the acid catalysis". J. Am. Chem. Soc. 81: 2007–2012. doi:10.1021/ja01517a055.
  10. ^ Fahr, E.; Neumann, L. (1965). "Curtius-Reaktion mit Bortrihalogeniden". Angew. Chem. 77 (13): 591. Bibcode:1965AngCh..77..591F. doi:10.1002/ange.19650771308.
  11. ^ Wentrup, C.; Bornemann, H. (2005). "Curtius rearrangment of acyl azides revisited - formation of cyanate". Eur. J. Org. Chem.: 4521–4524. doi:10.1002/ejoc.200500545.
  12. ^ Eibler, E.; Sauer, J. (1974). "Ein Betrag zur Isocyanatbildung bei der Photolyse von Acylaziden". Tetrahedron Lett. 15 (30): 2569–2572. doi:10.1016/s0040-4039(01)92295-6.
  13. ^ August Darapsky (1936) "Darstellung von α-Aminosäuren aus Alkyl-cyanessigsäuren" (Preparation of α-amino acids from alkyl cyanoacetic acids), Journal für Praktische Chemie, 146 : 250-267.
  14. ^ Gagnon, P. E.; Bovin, P. A.; Craig, H. M. (1951). "Synthesis of amino acids from substituted cyanoacetic esters". Can. J. Chem. 29: 70–75. doi:10.1139/cjc-29-1-70.
  15. ^ Bertrand, G.; Majoral, J.; Baceiredo, A. (1980). "Photolytic rearrangement of phosphorus azide: evidence for a transient metaphosphonimidate". Tetrahedron Lett. 21 (52): 5015–5018. doi:10.1016/s0040-4039(00)71119-1.
  16. ^ a b Harger, M. J. P.; Westlake, S. (1982). "Photolysis of some unsymmetrical phosphinic azides in methanol". Tetrahedron. 38 (20): 3073–3078. doi:10.1016/0040-4020(82)80195-6.
  17. ^ Am Ende, David J.; Devries, Keith M.; Clifford, Pamela J.; Brenek, Steven J. (1998). "A Calorimetric Investigation to Safely Scale-Up a Curtius Rearrangement of Acryloyl Azide". Organic Process Research & Development. 2 (6): 382–392. doi:10.1021/op970115w.
  18. ^ Lebel, H.; Leogane, O. (2005). "Boc-protected amines via a mild and efficient one-pot Curtius rearrangement". Organic Letters. 7 (19): 4107–4110. doi:10.1021/ol051428b. PMID 16146363.
  19. ^ Jessup, P. J.; Petty, C. B.; Roos, J.; Overman, L. E. (1988). "1-N-Acylamino-1,3-dienes from 2,4-pentadienoic acids by the Curtius rearrangement: benzyl trans-1,3-butadiene-1-carbamate". Organic Syntheses; Collected Volumes, vol. 6, p. 95.
  20. ^ Woodward, R. B.; Fukunaga, T.; Kelly, R. C. (1964). "Triquinacene". J. Am. Chem. Soc. 86 (15): 3162–3164. doi:10.1021/ja01069a046.
  21. ^ Ishikawa, H.; Suzuki, T.; Hayashi, Y. (2009). "High-yielding synthesis of the anti-influenza neuramidase inhibitor (-)-oseltamivir by three "one-pot" operations". Angew. Chem. Int. Ed. 48 (7): 1304–1307. doi:10.1002/anie.200804883. PMID 19123206.
  22. ^ Unsworth, William P.; Kitsiou, Christiana; Taylor, Richard J. K. (5 July 2013). "An Expedient Protecting-Group-Free Total Synthesis of (±)-Dievodiamine". Organic Letters. 15 (13): 3302–3305. doi:10.1021/ol4013469. PMID 23786450.
[edit] Wikimedia Commons has media related to Curtius rearrangement.
  • "Mechanism In Motion: Curtius rearrangement". YouTube. 24 August 2010.
  • v
  • t
  • e
Topics in organic reactions
  • Addition reaction
  • Elimination reaction
  • Polymerization
  • Reagents
  • Rearrangement reaction
  • Redox reaction
  • Regioselectivity
  • Stereoselectivity
  • Stereospecificity
  • Substitution reaction
  • A value
  • Alpha effect
  • Annulene
  • Anomeric effect
  • Antiaromaticity
  • Aromatic ring current
  • Aromaticity
  • Baird's rule
  • Baker–Nathan effect
  • Baldwin's rules
  • Bema Hapothle
  • Beta-silicon effect
  • Bicycloaromaticity
  • Bredt's rule
  • Bürgi–Dunitz angle
  • Catalytic resonance theory
  • Charge remote fragmentation
  • Charge-transfer complex
  • Clar's rule
  • Conformational isomerism
  • Conjugated system
  • Conrotatory and disrotatory
  • Curtin–Hammett principle
  • Dynamic binding (chemistry)
  • Edwards equation
  • Effective molarity
  • Electromeric effect
  • Electron-rich
  • Electron-withdrawing group
  • Electronic effect
  • Electrophile
  • Evelyn effect
  • Flippin–Lodge angle
  • Free-energy relationship
  • Grunwald–Winstein equation
  • Hammett acidity function
  • Hammett equation
  • George S. Hammond
  • Hammond's postulate
  • Homoaromaticity
  • Hückel's rule
  • Hyperconjugation
  • Inductive effect
  • Kinetic isotope effect
  • LFER solvent coefficients (data page)
  • Marcus theory
  • Markovnikov's rule
  • Möbius aromaticity
  • Möbius–Hückel concept
  • More O'Ferrall–Jencks plot
  • Negative hyperconjugation
  • Neighbouring group participation
  • 2-Norbornyl cation
  • Nucleophile
  • Kennedy J. P. Orton
  • Passive binding
  • Phosphaethynolate
  • Polar effect
  • Polyfluorene
  • Ring strain
  • Σ-aromaticity
  • Spherical aromaticity
  • Spiroaromaticity
  • Steric effects
  • Superaromaticity
  • Swain–Lupton equation
  • Taft equation
  • Thorpe–Ingold effect
  • Vinylogy
  • Walsh diagram
  • Woodward–Hoffmann rules
  • Woodward's rules
  • Y-aromaticity
  • Yukawa–Tsuno equation
  • Zaitsev's rule
  • Σ-bishomoaromaticity
List of organic reactions
Carbon-carbon bond forming reactions
  • Acetoacetic ester synthesis
  • Acyloin condensation
  • Aldol condensation
  • Aldol reaction
  • Alkane metathesis
  • Alkyne metathesis
  • Alkyne trimerisation
  • Alkynylation
  • Allan–Robinson reaction
  • Arndt–Eistert reaction
  • Auwers synthesis
  • Aza-Baylis–Hillman reaction
  • Barbier reaction
  • Barton–Kellogg reaction
  • Baylis–Hillman reaction
  • Benary reaction
  • Bergman cyclization
  • Biginelli reaction
  • Bingel reaction
  • Blaise ketone synthesis
  • Blaise reaction
  • Blanc chloromethylation
  • Bodroux–Chichibabin aldehyde synthesis
  • Bouveault aldehyde synthesis
  • Bucherer–Bergs reaction
  • Buchner ring expansion
  • Cadiot–Chodkiewicz coupling
  • Carbonyl allylation
  • Carbonyl olefin metathesis
  • Castro–Stephens coupling
  • Chan rearrangement
  • Chan–Lam coupling
  • Claisen condensation
  • Claisen rearrangement
  • Claisen-Schmidt condensation
  • Combes quinoline synthesis
  • Corey–Fuchs reaction
  • Corey–House synthesis
  • Coupling reaction
  • Cross-coupling reaction
  • Cross dehydrogenative coupling
  • Cross-coupling partner
  • Dakin–West reaction
  • Darzens reaction
  • Diels–Alder reaction
  • Doebner reaction
  • Wulff–Dötz reaction
  • Ene reaction
  • Enyne metathesis
  • Ethenolysis
  • Favorskii reaction
  • Ferrier carbocyclization
  • Friedel–Crafts reaction
  • Fujimoto–Belleau reaction
  • Fujiwara–Moritani reaction
  • Fukuyama coupling
  • Gabriel–Colman rearrangement
  • Gattermann reaction
  • Glaser coupling
  • Grignard reaction
  • Grignard reagent
  • Hammick reaction
  • Heck reaction
  • Henry reaction
  • Heterogeneous metal catalyzed cross-coupling
  • High dilution principle
  • Hiyama coupling
  • Homologation reaction
  • Horner–Wadsworth–Emmons reaction
  • Hydrocyanation
  • Hydrovinylation
  • Hydroxymethylation
  • Ivanov reaction
  • Johnson–Corey–Chaykovsky reaction
  • Julia olefination
  • Julia–Kocienski olefination
  • Kauffmann olefination
  • Knoevenagel condensation
  • Knorr pyrrole synthesis
  • Kolbe–Schmitt reaction
  • Kowalski ester homologation
  • Kulinkovich reaction
  • Kumada coupling
  • Liebeskind–Srogl coupling
  • Malonic ester synthesis
  • Mannich reaction
  • McMurry reaction
  • Meerwein arylation
  • Methylenation
  • Michael reaction
  • Minisci reaction
  • Mizoroki-Heck vs. Reductive Heck
  • Nef isocyanide reaction
  • Nef synthesis
  • Negishi coupling
  • Nierenstein reaction
  • Nitro-Mannich reaction
  • Nozaki–Hiyama–Kishi reaction
  • Olefin conversion technology
  • Olefin metathesis
  • Palladium–NHC complex
  • Passerini reaction
  • Peterson olefination
  • Pfitzinger reaction
  • Piancatelli rearrangement
  • Pinacol coupling reaction
  • Prins reaction
  • Quelet reaction
  • Ramberg–Bäcklund reaction
  • Rauhut–Currier reaction
  • Reformatsky reaction
  • Reimer–Tiemann reaction
  • Rieche formylation
  • Ring-closing metathesis
  • Robinson annulation
  • Sakurai reaction
  • Seyferth–Gilbert homologation
  • Shapiro reaction
  • Sonogashira coupling
  • Stetter reaction
  • Stille reaction
  • Stollé synthesis
  • Stork enamine alkylation
  • Suzuki reaction
  • Takai olefination
  • Thermal rearrangement of aromatic hydrocarbons
  • Thorpe reaction
  • Ugi reaction
  • Ullmann reaction
  • Wagner-Jauregg reaction
  • Weinreb ketone synthesis
  • Wittig reaction
  • Wurtz reaction
  • Wurtz–Fittig reaction
  • Zincke–Suhl reaction
Homologation reactions
  • Arndt–Eistert reaction
  • Hooker reaction
  • Kiliani–Fischer synthesis
  • Kowalski ester homologation
  • Methoxymethylenetriphenylphosphorane
  • Seyferth–Gilbert homologation
  • Wittig reaction
Olefination reactions
  • Bamford–Stevens reaction
  • Barton–Kellogg reaction
  • Boord olefin synthesis
  • Chugaev elimination
  • Cope reaction
  • Corey–Winter olefin synthesis
  • Dehydrohalogenation
  • Elimination reaction
  • Grieco elimination
  • Hofmann elimination
  • Horner–Wadsworth–Emmons reaction
  • Hydrazone iodination
  • Julia olefination
  • Julia–Kocienski olefination
  • Kauffmann olefination
  • McMurry reaction
  • Peterson olefination
  • Ramberg–Bäcklund reaction
  • Shapiro reaction
  • Takai olefination
  • Wittig reaction
Carbon-heteroatom bond forming reactions
  • Azo coupling
  • Bartoli indole synthesis
  • Boudouard reaction
  • Cadogan–Sundberg indole synthesis
  • Diazonium compound
  • Esterification
  • Grignard reagent
  • Haloform reaction
  • Hegedus indole synthesis
  • Hurd–Mori 1,2,3-thiadiazole synthesis
  • Kharasch–Sosnovsky reaction
  • Knorr pyrrole synthesis
  • Leimgruber–Batcho indole synthesis
  • Mukaiyama hydration
  • Nenitzescu indole synthesis
  • Oxymercuration reaction
  • Reed reaction
  • Schotten–Baumann reaction
  • Ullmann condensation
  • Williamson ether synthesis
  • Yamaguchi esterification
Degradation reactions
  • Barbier–Wieland degradation
  • Bergmann degradation
  • Edman degradation
  • Emde degradation
  • Gallagher–Hollander degradation
  • Hofmann rearrangement
  • Hooker reaction
  • Isosaccharinic acid
  • Marker degradation
  • Ruff degradation
  • Strecker degradation
  • Von Braun amide degradation
  • Weerman degradation
  • Wohl degradation
Organic redox reactions
  • Acyloin condensation
  • Adkins–Peterson reaction
  • Akabori amino-acid reaction
  • Alcohol oxidation
  • Algar–Flynn–Oyamada reaction
  • Amide reduction
  • Andrussow process
  • Angeli–Rimini reaction
  • Aromatization
  • Autoxidation
  • Baeyer–Villiger oxidation
  • Barton–McCombie deoxygenation
  • Bechamp reduction
  • Benkeser reaction
  • Bergmann degradation
  • Birch reduction
  • Bohn–Schmidt reaction
  • Bosch reaction
  • Bouveault–Blanc reduction
  • Boyland–Sims oxidation
  • Cannizzaro reaction
  • Carbonyl reduction
  • Clemmensen reduction
  • Collins oxidation
  • Corey–Itsuno reduction
  • Corey–Kim oxidation
  • Corey–Winter olefin synthesis
  • Criegee oxidation
  • Dakin oxidation
  • Davis oxidation
  • Deoxygenation
  • Dess–Martin oxidation
  • DNA oxidation
  • Elbs persulfate oxidation
  • Emde degradation
  • Eschweiler–Clarke reaction
  • Étard reaction
  • Fischer–Tropsch process
  • Fleming–Tamao oxidation
  • Fukuyama reduction
  • Ganem oxidation
  • Glycol cleavage
  • Griesbaum coozonolysis
  • Grundmann aldehyde synthesis
  • Haloform reaction
  • Hydrogenation
  • Hydrogenolysis
  • Hydroxylation
  • Jones oxidation
  • Kiliani–Fischer synthesis
  • Kolbe electrolysis
  • Kornblum oxidation
  • Kornblum–DeLaMare rearrangement
  • Leuckart reaction
  • Ley oxidation
  • Lindgren oxidation
  • Lipid peroxidation
  • Lombardo methylenation
  • Luche reduction
  • Markó–Lam deoxygenation
  • McFadyen–Stevens reaction
  • Meerwein–Ponndorf–Verley reduction
  • Methionine sulfoxide
  • Miyaura borylation
  • Mozingo reduction
  • Noyori asymmetric hydrogenation
  • Omega oxidation
  • Oppenauer oxidation
  • Oxygen rebound mechanism
  • Ozonolysis
  • Parikh–Doering oxidation
  • Pinnick oxidation
  • Prévost reaction
  • Reduction of nitro compounds
  • Reductive amination
  • Riley oxidation
  • Rosenmund reduction
  • Rubottom oxidation
  • Sabatier reaction
  • Sarett oxidation
  • Selenoxide elimination
  • Shapiro reaction
  • Sharpless asymmetric dihydroxylation
  • Epoxidation of allylic alcohols
  • Sharpless epoxidation
  • Sharpless oxyamination
  • Stahl oxidation
  • Staudinger reaction
  • Stephen aldehyde synthesis
  • Swern oxidation
  • Transfer hydrogenation
  • Wacker process
  • Wharton reaction
  • Whiting reaction
  • Wohl–Aue reaction
  • Wolff–Kishner reduction
  • Wolffenstein–Böters reaction
  • Zinin reaction
Rearrangement reactions
  • 1,2-rearrangement
  • 1,2-Wittig rearrangement
  • 2,3-sigmatropic rearrangement
  • 2,3-Wittig rearrangement
  • Achmatowicz reaction
  • Alkyne zipper reaction
  • Allen–Millar–Trippett rearrangement
  • Allylic rearrangement
  • Alpha-ketol rearrangement
  • Amadori rearrangement
  • Arndt–Eistert reaction
  • Aza-Cope rearrangement
  • Baker–Venkataraman rearrangement
  • Bamberger rearrangement
  • Banert cascade
  • Beckmann rearrangement
  • Benzilic acid rearrangement
  • Bergman cyclization
  • Bergmann degradation
  • Boekelheide reaction
  • Brook rearrangement
  • Buchner ring expansion
  • Carroll rearrangement
  • Chan rearrangement
  • Claisen rearrangement
  • Cope rearrangement
  • Corey–Fuchs reaction
  • Cornforth rearrangement
  • Criegee rearrangement
  • Curtius rearrangement
  • Demjanov rearrangement
  • Di-π-methane rearrangement
  • Dimroth rearrangement
  • Divinylcyclopropane-cycloheptadiene rearrangement
  • Dowd–Beckwith ring-expansion reaction
  • Electrocyclic reaction
  • Ene reaction
  • Enyne metathesis
  • Favorskii reaction
  • Favorskii rearrangement
  • Ferrier carbocyclization
  • Ferrier rearrangement
  • Fischer–Hepp rearrangement
  • Fries rearrangement
  • Fritsch–Buttenberg–Wiechell rearrangement
  • Gabriel–Colman rearrangement
  • Group transfer reaction
  • Halogen dance rearrangement
  • Hayashi rearrangement
  • Hofmann rearrangement
  • Hofmann–Martius rearrangement
  • Ireland–Claisen rearrangement
  • Jacobsen rearrangement
  • Kornblum–DeLaMare rearrangement
  • Kowalski ester homologation
  • Lobry de Bruyn–Van Ekenstein transformation
  • Lossen rearrangement
  • McFadyen–Stevens reaction
  • McLafferty rearrangement
  • Meyer–Schuster rearrangement
  • Mislow–Evans rearrangement
  • Mumm rearrangement
  • Myers allene synthesis
  • Nazarov cyclization reaction
  • Neber rearrangement
  • Newman–Kwart rearrangement
  • Overman rearrangement
  • Oxy-Cope rearrangement
  • Pericyclic reaction
  • Piancatelli rearrangement
  • Pinacol rearrangement
  • Pummerer rearrangement
  • Ramberg–Bäcklund reaction
  • Ring expansion and contraction
  • Ring-closing metathesis
  • Rupe reaction
  • Schmidt reaction
  • Semipinacol rearrangement
  • Seyferth–Gilbert homologation
  • Sigmatropic reaction
  • Skattebøl rearrangement
  • Smiles rearrangement
  • Sommelet–Hauser rearrangement
  • Stevens rearrangement
  • Stieglitz rearrangement
  • Thermal rearrangement of aromatic hydrocarbons
  • Tiffeneau–Demjanov rearrangement
  • Vinylcyclopropane rearrangement
  • Wagner–Meerwein rearrangement
  • Wallach rearrangement
  • Weerman degradation
  • Westphalen–Lettré rearrangement
  • Willgerodt rearrangement
  • Wolff rearrangement
Ring forming reactions
  • 1,3-Dipolar cycloaddition
  • Annulation
  • Azide-alkyne Huisgen cycloaddition
  • Baeyer–Emmerling indole synthesis
  • Bartoli indole synthesis
  • Bergman cyclization
  • Biginelli reaction
  • Bischler–Möhlau indole synthesis
  • Bischler–Napieralski reaction
  • Blum–Ittah aziridine synthesis
  • Bobbitt reaction
  • Bohlmann–Rahtz pyridine synthesis
  • Borsche–Drechsel cyclization
  • Bucherer carbazole synthesis
  • Bucherer–Bergs reaction
  • Cadogan–Sundberg indole synthesis
  • Camps quinoline synthesis
  • Chichibabin pyridine synthesis
  • Cook–Heilbron thiazole synthesis
  • Cycloaddition
  • Darzens reaction
  • Davis–Beirut reaction
  • De Kimpe aziridine synthesis
  • Debus–Radziszewski imidazole synthesis
  • Dieckmann condensation
  • Diels–Alder reaction
  • Feist–Benary synthesis
  • Ferrario–Ackermann reaction
  • Fiesselmann thiophene synthesis
  • Fischer indole synthesis
  • Fischer oxazole synthesis
  • Friedländer synthesis
  • Gewald reaction
  • Graham reaction
  • Hantzsch pyridine synthesis
  • Hegedus indole synthesis
  • Hemetsberger indole synthesis
  • Hofmann–Löffler reaction
  • Hurd–Mori 1,2,3-thiadiazole synthesis
  • Iodolactonization
  • Isay reaction
  • Jacobsen epoxidation
  • Johnson–Corey–Chaykovsky reaction
  • Knorr pyrrole synthesis
  • Knorr quinoline synthesis
  • Kröhnke pyridine synthesis
  • Kulinkovich reaction
  • Larock indole synthesis
  • Madelung synthesis
  • Nazarov cyclization reaction
  • Nenitzescu indole synthesis
  • Niementowski quinazoline synthesis
  • Niementowski quinoline synthesis
  • Paal–Knorr synthesis
  • Paternò–Büchi reaction
  • Pechmann condensation
  • Petrenko-Kritschenko piperidone synthesis
  • Pictet–Spengler reaction
  • Pomeranz–Fritsch reaction
  • Prilezhaev reaction
  • Pschorr cyclization
  • Reissert indole synthesis
  • Ring-closing metathesis
  • Robinson annulation
  • Sharpless epoxidation
  • Simmons–Smith reaction
  • Skraup reaction
  • Urech hydantoin synthesis
  • Van Leusen reaction
  • Wenker synthesis
Cycloaddition
  • 1,3-Dipolar cycloaddition
  • 4+4 Photocycloaddition
  • (4+3) cycloaddition
  • 6+4 Cycloaddition
  • Alkyne trimerisation
  • Aza-Diels–Alder reaction
  • Azide-alkyne Huisgen cycloaddition
  • Bradsher cycloaddition
  • Cheletropic reaction
  • Conia-ene reaction
  • Cyclopropanation
  • Diazoalkane 1,3-dipolar cycloaddition
  • Diels–Alder reaction
  • Enone–alkene cycloadditions
  • Hexadehydro Diels–Alder reaction
  • Intramolecular Diels–Alder cycloaddition
  • Inverse electron-demand Diels–Alder reaction
  • Ketene cycloaddition
  • McCormack reaction
  • Metal-centered cycloaddition reactions
  • Nitrone-olefin (3+2) cycloaddition
  • Oxo-Diels–Alder reaction
  • Ozonolysis
  • Pauson–Khand reaction
  • Povarov reaction
  • Prato reaction
  • Retro-Diels–Alder reaction
  • Staudinger synthesis
  • Trimethylenemethane cycloaddition
  • Vinylcyclopropane (5+2) cycloaddition
  • Wagner-Jauregg reaction
Heterocycle forming reactions
  • Algar–Flynn–Oyamada reaction
  • Allan–Robinson reaction
  • Auwers synthesis
  • Bamberger triazine synthesis
  • Banert cascade
  • Barton–Zard reaction
  • Bernthsen acridine synthesis
  • Bischler–Napieralski reaction
  • Bobbitt reaction
  • Boger pyridine synthesis
  • Borsche–Drechsel cyclization
  • Bucherer carbazole synthesis
  • Bucherer–Bergs reaction
  • Chichibabin pyridine synthesis
  • Cook–Heilbron thiazole synthesis
  • Diazoalkane 1,3-dipolar cycloaddition
  • Einhorn–Brunner reaction
  • Erlenmeyer–Plöchl azlactone and amino-acid synthesis
  • Feist–Benary synthesis
  • Fischer oxazole synthesis
  • Gabriel–Colman rearrangement
  • Gewald reaction
  • Hantzsch ester
  • Hantzsch pyridine synthesis
  • Herz reaction
  • Knorr pyrrole synthesis
  • Kröhnke pyridine synthesis
  • Lectka enantioselective beta-lactam synthesis
  • Lehmstedt–Tanasescu reaction
  • Niementowski quinazoline synthesis
  • Nitrone-olefin (3+2) cycloaddition
  • Paal–Knorr synthesis
  • Pellizzari reaction
  • Pictet–Spengler reaction
  • Pomeranz–Fritsch reaction
  • Prilezhaev reaction
  • Robinson–Gabriel synthesis
  • Stollé synthesis
  • Urech hydantoin synthesis
  • Wenker synthesis
  • Wohl–Aue reaction
Authority control databases Edit this at Wikidata
  • GND

Từ khóa » C6h5cocl + Nan3