Đại Số Boole được đặt Tên Theo George Boole (1815–1864), Một Nhà Toán Học Người Anh. ... Định Nghĩa.

Bài viết này có nhiều vấn đề. Xin vui lòng giúp cải thiện hoặc thảo luận về những vấn đề này bên trang thảo luận. (Tìm hiểu cách thức và thời điểm xóa những thông báo này)
Bài viết hoặc đoạn này cần người am hiểu về chủ đề này trợ giúp biên tập mở rộng hoặc cải thiện. Bạn có thể giúp cải thiện trang này nếu có thể. Xem trang thảo luận để biết thêm chi tiết. (tháng 1/2022)
Bài viết này cần được viết lại toàn bộ để thỏa mãn tiêu chuẩn chất lượng của Wikipedia. Bạn có thể giúp. Có thể có thêm thông tin tại trang thảo luận. (tháng 1/2022)
(Tìm hiểu cách thức và thời điểm xóa thông báo này)
Boolean lattice of subsets

Trong đại số trừu tượng, đại số Boole hay đại số Boolean là một cấu trúc đại số có các tính chất cơ bản của cả các phép toán trên tập hợp và các phép toán logic. Cụ thể, các phép toán trên tập hợp được quan tâm là phép giao, phép hợp, phép bù; và các phép toán logic là Và, Hoặc, Không.

Đại số Boole được đặt tên theo George Boole (1815–1864), một nhà toán học người Anh.

Đại số Boole làm việc với các đại lượng chỉ nhận giá trị Đúng hoặc Sai và có thể thể hiện hệ thống số nhị phân, hoặc các mức điện thế trong mạch điện logic. Do đó đại số Boole có nhiều ứng dụng trong kỹ thuật điện và khoa học máy tính, cũng như trong logic toán học.

Định nghĩa

[sửa | sửa mã nguồn]

Đại số Boole gồm 6 định lý cơ bản và một tập hợp A, được trang bị hai phép toán hai ngôi ∧ (được gọi là "AND" hay "phép nhân"), ∨ (gọi là "OR" hay "phép cộng"), một phép toán một ngôi ¬ (gọi là "NOT" hay "phép phủ định") và hai giá trị 0 và 1 tương ứng với mức thấp (ký hiệu ⊥) và mức cao (ký hiệu ⊤), giả sử a, b, c thuộc tập hợp A, ta có các tiên đề sau:[1]

a ∨ (bc) = (ab) ∨ c a ∧ (bc) = (ab) ∧ c Phép kết hợp
ab = ba ab = ba Phép hoán vị
a ∨ (ab) = a a ∧ (ab) = a Phép hấp thụ
a ∨ 0 = a a ∧ 1 = a Phép đồng nhất
a ∨ (bc) = (ab) ∧ (ac)   a ∧ (bc) = (ab) ∨ (ac)   Phép phân phối
a ∨ ¬a = 1 a ∧ ¬a = 0 Phép bù

Lưu ý rằng, phép hấp thụ có thể được loại trừ khỏi tập các tiên đề vì nó có thể được bắt nguồn từ các tiên đề khác.

Một đại số Boole chỉ với một phần tử được gọi là đại số bẩm sinh hoặc một đại số Boole thoái hoá. (Một số tác giả yêu cầu 0 và 1 là các phần tử riêng biệt để loại trừ trường hợp này).

Xuất phát từ ba cặp tiên đề cuối cùng ở trên (Phép đồng nhất, phân phối và bù), hoặc từ phép hấp thụ, ta có

a = ba     khi và chỉ khi     ab = b

Ví dụ

[sửa | sửa mã nguồn]
  • Phép đại số Boole gồm hai phần tử, 0 và 1, xác định bởi các quy tắc:
0 1
0 0 0
1 0 1
0 1
0 0 1
1 1 1
a 0 1
¬a 1 0
  • Nó có nhiều úng dụng trong logic, với 0 là false, 1 là true, ∧ là and (phép nhân), ∨ là or (phép cộng), và ¬ là not (phép phủ định).
  • Đại số Boole hai phần tử cũng được sử dụng cho thiết kế mạch trong kỹ thuật điện; ở đây 0 và 1 đại diện cho hai trạng thái khác nhau của một bit trong một mạch kỹ thuật số, điển hình là điện thế cao và thấp. Mạch được mô tả bằng các biểu thức có chứa các biến, và hai biểu thức như vậy là bằng nhau cho tất cả các giá trị của các biến nếu và chỉ khi các mạch tương ứng có cùng một hành vi đầu vào-đầu ra. Hơn nữa, mọi hành vi đầu vào-đầu ra có thể có thể được mô hình hoá bằng một biểu thức Boolean phù hợp.
* Đại số Boolean hai phần tử cũng quan trọng trong lý thuyết chung về đại số Boolean, bởi vì một phương trình liên quan đến một số biến thường đúng trong tất cả các đại số Boolean nếu và chỉ khi nó đúng trong đại số Boolean hai phần tử (có thể được kiểm tra bằng thuật toán brute force tầm thường đối với số lượng biến nhỏ). Ví dụ, điều này có thể được sử dụng để chỉ ra rằng các luật sau ( Định lý đồng thuận ) thường hợp lệ trong tất cả các đại số Boolean: ** ( a b ) ∧ (¬a c ) ∧ ( b c ) ≡ ( a b ) ∧ (¬a c ) ** ( a b ) ∨ (¬a c ) ∨ ( b c ) ≡ ( a b ) ∨ (¬a c )
  • Power set (tập hợp của tất cả các tập hợp con) của bất kỳ tập hợp không có giá trị nào cho trước S tạo thành đại số Boolean, một đại số tập hợp, với hai phép toán ∨: = ∪ (union) và ∧: = ∩ (giao điểm). Phần tử nhỏ nhất 0 là tập rỗng và phần tử lớn nhất 1 là chính tập S .
* Sau đại số Boolean hai phần tử, đại số Boolean đơn giản nhất được xác định bởi power set của hai nguyên tử:
0 a b 1
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
1 0 a b 1
0 a b 1
0 0 a b 1
a a a 1 1
b b 1 b 1
1 1 1 1 1
x 0 a b 1
¬x 1 b a 0
  • Tập hợp của tất cả các tập con của S là hữu hạn hoặc cofinite là một đại số Boolean, một đại số của các tập.
  • Bắt đầu với giải tích mệnh đề với ký hiệu câu κ, tạo thành đại số Lindenbaum (nghĩa là tập hợp các câu trong mô đun giải tích mệnh đề tautology) . Cấu trúc này tạo ra một đại số Boolean. Trên thực tế, nó là đại số Boolean miễn phí trên bộ tạo κ. Phép gán chân trị trong phép tính mệnh đề sau đó là phép đồng cấu đại số Boolean từ đại số này sang đại số Boolean hai phần tử.
  • Cho bất kỳ được sắp xếp theo thứ tự tuyến tính bất kỳ tập hợp L có ít phần tử nhất, đại số khoảng là đại số nhỏ nhất trong các tập con của L chứa tất cả các khoảng nửa mở [ a , b ) sao cho a nằm trong L b nằm trong L hoặc bằng ∞. Đại số khoảng rất hữu ích trong việc nghiên cứu Lindenbaum-Tarski algebra s; mọi đại số Boolean đếm được là đẳng cấu với một đại số khoảng.
Sơ đồ Hasse của đại số Boolean các ước của 30.
  • Với bất kỳ số tự nhiên n , tập hợp tất cả các số chia dương của n , xác định ab nếu a ' 'divides' 'b' ', tạo thành mạng tinh thể phân phối. Mạng tinh thể này là một đại số Boolean nếu và chỉ khi n là không bình phương. Phần tử dưới cùng và phần tử trên cùng của đại số Boolean này lần lượt là số tự nhiên 1 và n . Phần bù của a được cho bởi n / a . Sự gặp gỡ và phép nối của a b được cho bởi ước số chung lớn nhất (gcd) và bội số chung nhỏ nhất (lcm) của a b , tương ứng. Phép cộng vòng a + b được cho bởi lcm ( a , b ) / gcd ( a , b ). Hình ảnh cho thấy một ví dụ cho n = 30. Như một ví dụ ngược lại, xem xét n = 60 không bình phương tự do, ước chung lớn nhất của 30 và phần bù 2 của nó sẽ là 2, trong khi nó phải là phần tử dưới cùng 1.

* Các ví dụ khác về đại số Boolean phát sinh từ không gian tôpô: nếu X là một không gian tôpô, thì tập hợp tất cả các tập con của X là vừa mở và đóng tạo thành đại số Boolean với các phép toán ∨: = ∪ (liên hợp) và ∧: = ∩ (giao điểm).

  • Nếu R là một vòng tùy ý và chúng tôi xác định tập hợp các iđêan trung tâm bởi A = { e R : e 2 = e , ex = xe , ∀x R } thì tập A trở thành đại số Boolean với các phép toán e f : = e + f - ef e f : = ef .

Tham khảo

[sửa | sửa mã nguồn] Wikimedia Commons có thêm hình ảnh và phương tiện về Đại số Boole.
  1. ^ Davey, Priestley, 1990, p.109, 131, 144

Liên kết ngoài

[sửa | sửa mã nguồn]
  • Boolean algebra tại Encyclopædia Britannica (bằng tiếng Anh)
  • x
  • t
  • s
Khoa học máy tính
Chú ý: Bản mẫu này cơ bản dựa trên Hệ thống xếp loại điện toán ACM năm 2012.
Phần cứng
  • Mạch in
  • Thiết bị ngoại vi
  • Vi mạch
  • Vi mạch tích hợp
  • Hệ thống trên vi mạch (SoC)
  • Tiêu thụ năng lượng (Điện toán xanh)
  • Tự động hóa thiết kế điện tử
  • Tăng tốc phần cứng
  • Bộ xử lý
  • Kích thước / Dạng thức
Tổ chức hệ thống máy tính
  • Kiến trúc máy tính
  • Độ phức tạp tính toán
  • Độ tin cậy hệ thống
  • Hệ thống nhúng
  • Hệ thống thời gian thực
Mạng máy tính
  • Kiến trúc mạng
  • Giao thức mạng
  • Phần cứng mạng
  • Bộ lập lịch trình mạng
  • Hiệu suất mạng
  • Dịch vụ mạng
Tổ chức phần mềm
  • Trình thông dịch
  • Middleware
  • Máy ảo
  • Hệ điều hành
  • Chất lượng phần mềm
Ký pháp và công cụ phần mềm
  • Mẫu hình lập trình
  • Ngôn ngữ lập trình
  • Trình biên dịch
  • Ngôn ngữ miền chuyên biệt
  • Ngôn ngữ mô hình hóa
  • Khung phần mềm
  • Môi trường phát triển tích hợp
  • Quản lý cấu hình phần mềm
  • Thư viện phần mềm
  • Kho chứa phần mềm
Phát triển phần mềm
  • Biến điều khiển
  • Quy trình phát triển phần mềm
  • Phân tích yêu cầu
  • Thiết kế phần mềm
  • Xây dựng phần mềm
  • Triển khai phần mềm
  • Công nghệ phần mềm
  • Bảo trì phần mềm
  • Nhóm lập trình
  • Mô hình nguồn mở
Lý thuyết tính toán
  • Mô hình tính toán
    • Ngẫu nhiên
  • Ngôn ngữ hình thức
  • Lý thuyết Automat
  • Lý thuyết khả tính
  • Lý thuyết độ phức tạp tính toán
  • Logic
  • Ngữ nghĩa
Thuật toán
  • Thiết kế thuật toán
  • Phân tích thuật toán
  • Hiệu quả thuật toán
  • Thuật toán ngẫu nhiên
  • Hình học tính toán
Toán học về điện toán
  • Toán học rời rạc
  • Xác suất
  • Thống kê
  • Phần mềm toán học
  • Lý thuyết thông tin
  • Giải tích toán học
  • Giải tích số
  • Khoa học máy tính lý thuyết
Hệ thống thông tin
  • Hệ quản trị cơ sở dữ liệu
  • Hệ thống lưu trữ thông tin
  • Hệ thống thông tin doanh nghiệp
  • Hệ thống thông tin xã hội
  • Hệ thống thông tin địa lý
  • Hệ thống hỗ trợ ra quyết định
  • Hệ thống điều khiển quá trình
  • Hệ thống thông tin đa phương tiện
  • Khai phá dữ liệu
  • Thư viện số
  • Nền tảng máy tính
  • Tiếp thị kỹ thuật số
  • World Wide Web
  • Truy hồi thông tin
Bảo mật
  • Mật mã học
  • Các phương pháp hình thức
  • Hacker bảo mật
  • Dịch vụ bảo mật
  • Hệ thống phát hiện xâm nhập
  • Bảo mật phần cứng
  • Bảo mật mạng
  • An toàn thông tin
  • Bảo mật ứng dụng
Tương tác người–máy
  • Thiết kế tương tác
  • Điện toán xã hội
  • Điện toán khắp nơi
  • Trực quan hóa
  • Khả năng tiếp cận
Tương tranh
  • Tính toán tương tranh
  • Tính toán song song
  • Điện toán phân tán
  • Đa luồng
  • Đa xử lý
Trí tuệ nhân tạo
  • Xử lý ngôn ngữ tự nhiên
  • Biểu diễn tri thức và suy luận
  • Thị giác máy tính
  • Lập kế hoạch và lên lịch tự động
  • Phương pháp tìm kiếm
  • Phương pháp điều khiển
  • Triết học về trí tuệ nhân tạo
  • Trí tuệ nhân tạo phân tán
Học máy
  • Học có giám sát
  • Học không có giám sát
  • Học tăng cường
  • Học đa tác vụ
  • Kiểm chứng chéo
Đồ họa
  • Hoạt hình
  • Thực tế mở rộng
    • Tăng cường
    • Hỗn hợp
    • Ảo
  • Kết xuất
  • Thao túng hình ảnh
  • Bộ xử lý đồ họa
  • Nén ảnh
  • Mô hình hóa dạng khối
Điện toán ứng dụng
  • Điện toán lượng tử
  • Thương mại điện tử
  • Phần mềm doanh nghiệp
  • Toán học tính toán
  • Vật lý tính toán
  • Hóa học tính toán
  • Sinh học tính toán
  • Khoa học xã hội tính toán
  • Kỹ thuật tính toán
  • Điện toán khả vi
  • Y tế tính toán
  • Nghệ thuật số
  • Xuất bản điện tử
  • Chiến tranh mạng
  • Bầu cử điện tử
  • Trò chơi video
  • Soạn thảo văn bản
  • Vận trù học
  • Công nghệ giáo dục
  • Quản lý tài liệu
  • Thể loại Thể loại
  • Đề cương
  • Thuật ngữ

Bài viết này vẫn còn sơ khai. Bạn có thể giúp Wikipedia mở rộng nội dung để bài được hoàn chỉnh hơn.

  • x
  • t
  • s

Từ khóa » Công Thức đại Số Boolean