Đại Số Tuyến Tính - Giải Bài Tập Về Ma Trận Nghịch đảo - Giáo Án
Có thể bạn quan tâm
- Trang chủ
- Đăng ký
- Đăng nhập
- Liên hệ
Giáo Án
Tổng hợp giáo án, bài giảng điện tử phục vụ mục đích tham khảo
Đại số tuyến tính - Giải bài tập về ma trận nghịch đảoGiải bài tập về ma trận nghịch đảo
Bạn đọc cũng có thể sử dụng phương pháp biến đổi sơ cấp để giải bài này)
Bài 23. Tìm ma trận nghịch đảo của ma trận
Bạn đang xem nội dung tài liệu Đại số tuyến tính - Giải bài tập về ma trận nghịch đảo, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trênĐẠI SỐ TUYẾN TÍNH §8. Giải bài tập về ma trận nghịch đảo Phiên bản đã chỉnh sửa PGS TS Mỵ Vinh Quang Ngày 29 tháng 12 năm 2004 Bài 21. Tìm ma trận nghịch đảo của ma trận A = 1 0 32 1 1 3 2 2 Giải Cách 1. Sử dụng phương pháp định thức Ta có: detA = 2 + 12− 9− 2 = 3 A11 = ∣∣∣∣∣ 1 12 2 ∣∣∣∣∣ = 0 A21 = − ∣∣∣∣∣ 0 32 2 ∣∣∣∣∣ = 6 A31 = ∣∣∣∣∣ 0 31 1 ∣∣∣∣∣ = −3 A12 = − ∣∣∣∣∣ 2 13 2 ∣∣∣∣∣ = −1 A22 = ∣∣∣∣∣ 1 33 2 ∣∣∣∣∣ = −7 A32 = − ∣∣∣∣∣ 1 32 1 ∣∣∣∣∣ = 5 A13 = ∣∣∣∣∣ 2 13 2 ∣∣∣∣∣ = 1 A23 = − ∣∣∣∣∣ 1 03 2 ∣∣∣∣∣ = −2 A33 = ∣∣∣∣∣ 1 02 1 ∣∣∣∣∣ = 1 Vậy A−1 = 1 3 0 6 −3−1 −7 5 1 −2 1 Cách 2. Sử dụng phương pháp biến đổi sơ cấp Xét ma trận A = 1 0 32 1 1 3 2 2 ∣∣∣∣∣∣∣ 1 0 0 0 1 0 0 0 1 d2→−2d1+d2−−−−−−−→ d3→−3d1+d3 1 0 30 1 −5 0 2 −7 ∣∣∣∣∣∣∣ 1 0 0 −2 1 0 −3 0 1 d3=−2d2+d3−−−−−−−→ 1 0 30 1 −5 0 0 3 ∣∣∣∣∣∣∣ 1 0 0 −2 1 0 1 −2 1 d3= 13d3−−−−→ 1 0 30 1 −5 0 0 1 ∣∣∣∣∣∣∣ 1 0 0 −2 1 0 1 3 −2 3 1 3 1 −→ 1 0 00 1 0 0 0 1 ∣∣∣∣∣∣∣ 0 2 −1 −1 3 −7 3 5 3 1 3 −2 3 1 3 Vậy A−1 = 0 2 −1−13 −73 53 1 3 −2 3 1 3 Bài 22. Tìm ma trận nghịch đảo của ma trận A = 1 3 22 1 3 3 2 1 Giải Ta sử dụng phương pháp định thức. Ta có detA = 1 + 27 + 8− 6− 6− 6 = 18 A11 = ∣∣∣∣∣ 1 32 1 ∣∣∣∣∣ = −5 A21 = − ∣∣∣∣∣ 3 22 1 ∣∣∣∣∣ = 1 A31 = ∣∣∣∣∣ 3 21 3 ∣∣∣∣∣ = 7 A12 = − ∣∣∣∣∣ 2 33 1 ∣∣∣∣∣ = 7 A22 = ∣∣∣∣∣ 1 23 1 ∣∣∣∣∣ = −5 A32 = − ∣∣∣∣∣ 1 22 3 ∣∣∣∣∣ = 1 A13 = ∣∣∣∣∣ 2 13 2 ∣∣∣∣∣ = 1 A23 = − ∣∣∣∣∣ 1 33 2 ∣∣∣∣∣ = 7 A33 = ∣∣∣∣∣ 1 32 1 ∣∣∣∣∣ = −5 Vậy A−1 = 1 18 −5 1 77 −5 1 1 7 −5 (Bạn đọc cũng có thể sử dụng phương pháp biến đổi sơ cấp để giải bài này) Bài 23. Tìm ma trận nghịch đảo của ma trận A = −1 1 1 1 1 −1 1 1 1 1 −1 1 1 1 1 −1 Giải Ta sử dụng phương pháp 3. 2 Xét hệ −x1 + x2 + x3 + x4 = y1 (1) x1 − x2 + x3 + x4 = y2 (2) x1 + x2 − x3 + x4 = y3 (3) x1 + x2 + x3 − x4 = y4 (4) (1) + (2) + (3) + (4) =⇒ x1 + x2 + x3 + x4 = 1 2 (y1 + y2 + y3 + y4) (∗) (∗)− (1) =⇒ x1 = 1 4 (−y1 + y2 + y3 + y4) (∗)− (2) =⇒ x2 = 1 4 (y1 − y2 + y3 + y4) (∗)− (3) =⇒ x3 = 1 4 (y1 + y2 − y3 + y4) (∗)− (4) =⇒ x4 = 1 4 (y1 + y2 + y3 − y4) Vậy A−1 = 1 4 −1 1 1 1 1 −1 1 1 1 1 −1 1 1 1 1 −1 Bài 24. Tìm ma trận nghịch đảo của ma trận A = 0 1 1 1 −1 0 1 1 −1 −1 0 1 −1 −1 −1 0 Giải Sử dụng phương pháp 3. Xét hệ x2 + x3 + x4 = y1 (1) −x1 + x3 + x4 = y2 (2) −x1 − x2 + x4 = y3 (3) −x1 − x2 − x3 = y4 (4) (1) + (2)− (3) + (4) =⇒ −x1 + x2 + x3 + x4 = y1 + y2 − y3 + y4 (∗) (1)− (∗) =⇒ x1 = −y2 + y3 − y4 (∗)− (2) =⇒ x2 = y1 − y3 + y4 (4) =⇒ x3 = −x1 − x2 − y4 = −y1 + y2 − y4 (3) =⇒ x4 = x1 + x2 + y3 = y1 − y2 + y3 3 Vậy A−1 = 0 −1 1 −1 1 0 −1 1 −1 1 0 −1 1 −1 1 0 Bài 25. Tìm ma trận nghịch đảo của ma trận 1 1 1 · · · 1 0 1 1 · · · 1 0 0 1 · · · 1 ... ... ... . . . ... 0 0 0 · · · 1 n×n Giải Sử dụng phương pháp 3. Xét hệ x1 + x2 + · · ·+ xn = y1 (1) x2 + · · ·+ xn = y2 (2) ... xn−1 + xn = yn−1 (n− 1) xn = yn (n) (1)− (2) =⇒ x1 = y1 − y2 (2)− (3) =⇒ x2 = y2 − y3 ... (n− 1)− (n) =⇒ xn−1 = yn−1 − yn (n) =⇒ xn = yn Vậy A−1 = 1 −1 0 0 · · · 0 0 0 1 −1 0 · · · 0 0 ... ... ... ... . . . 0 0 0 0 0 0 · · · 1 −1 0 0 0 0 · · · 0 1 4 Bài 26. Tìm ma trận nghịch đảo của ma trận A = 1 + a 1 1 · · · 1 1 1 + a 1 · · · 1 1 1 1 + a · · · 1 ... ... ... . . . ... 1 1 1 · · · 1 + a Giải Sử dụng phương pháp 3. Xét hệ (1 + a)x1 + x2 + x3 + · · ·+ xn = y1 (1) x1 + (1 + a)x2 + x3 + · · ·+ xn = y2 (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x1 + x2 + x3 + · · ·+ (1 + a)xn = yn (n) Lấy (1) + (2) + · · ·+ (n), ta có (n+ a)(x1 + x2 + · · ·+ xn) = y1 + y2 + · · ·+ yn 1. Nếu a = −n, ta có thể chọn tham số y1, y2, . . . , yn thỏa y1 + · · ·+ yn 6= 0. Khi đó hệ vô nghiệm và do đó ma trận A không khả nghịch. 2. Nếu a 6= −n, khi đó ta có x1 + x2 + · · ·+ xn = 1 n+ a (y1 + · · ·+ yn) (∗) (1)− (∗) =⇒ ax1 = 1 n+ a ((n+ a− 1)y1 − y2 − · · · − yn) (a) Nếu a = 0, ta có thể chọn tham số y1, y2, . . . , yn để phương trình trên vô nghiệm. Do đó hệ vô nghiệm và ma trận A không khả nghịch. (b) Nếu a 6= 0, ta có x1 = 1 a(n+ a) ((n+ a− 1)y1 − y2 − · · · − yn) (2)− (∗) =⇒ x2 = 1 a(n+ a) (y1 − (n+ a− 1)y2 − y3 − · · · − yn) ... (n)− (∗) =⇒ xn = 1 a(n+ a) (y1 − y2 − y3 − · · · − (n+ a− 1)yn) Vậy A−1 = 1 a(n+ a) n+ a− 1 −1 −1 · · · −1 −1 n+ a− 1 −1 · · · −1 −1 −1 n+ a− 1 · · · −1 ... ... ... . . . ... −1 −1 −1 · · · n+ a− 1 n×n 5 File đính kèm:
DS2011-08-20041229-thayQuang-bai8.pdf
Sáng kiến kinh nghiệm Những sai lầm thường gặp trong giải toán21 trang | Lượt xem: 2900 | Lượt tải: 4
Thiết kế bài giảng Đại số 10 Tiết 31 Một số phương trình quy về phương trình bậc nhất hoặc bậc hai (tiết 2)14 trang | Lượt xem: 959 | Lượt tải: 0
Giáo án Hình học 10 - Ôn tập chương 2 - Tích vô hướng của hai véc tơ và ứng dụng3 trang | Lượt xem: 2381 | Lượt tải: 1
Bài giảng Tiết 15, 16: Giá trị lượng giác của một góc bất kỳ ( từ 0 độ đến 180 độ )3 trang | Lượt xem: 1173 | Lượt tải: 0
Bài giảng Hình học 10 - Tiết 77: Luyện tập góc và cung lượng giác13 trang | Lượt xem: 1335 | Lượt tải: 3
Đề thi môn Đại số 10 CB - Bài số 26 trang | Lượt xem: 1170 | Lượt tải: 1
Giáo án Đại số lớp 10 - Tiết 28, 29, 30: Ôn tập về vectơ4 trang | Lượt xem: 1180 | Lượt tải: 0
Bài giảng Bài 5: Một số ví dụ về hệ phương trình bậc hai hai ẩn (tiếp)7 trang | Lượt xem: 2287 | Lượt tải: 4
Đề kiểm tra môn : toán thời gian : 45 phút5 trang | Lượt xem: 1333 | Lượt tải: 0
Giáo án Đại số 10 nâng cao - Tiết 41: Bất Đẳng Thức Và Chứng Minh Bất Đẳng Thức4 trang | Lượt xem: 1346 | Lượt tải: 5
Copyright © 2025 ThuVienGiaoAn.vn - Các bài soạn văn mẫu tham khảo - Thủ Thuật Phần Mềm - PDF
Từ khóa » Bài Tập Ma Trận Nghịch đảo Cấp 3
-
Bài Tập Ma Trận Nghịch đảo Và Lời Giải- Đại Số Và Hình Học Giải Tích
-
Giải Bài Tập Ma Trận Nghịch đảo - 123doc
-
TÌM MA TRẬN NGHỊCH ĐẢO CẤP 3 - BÀI TẬP - TS TRẦN HOAN
-
[PDF] BÀI TẬP ĐẠI SỐ TUYẾN TÍNH 1. MA TRẬN. 1.1. Cho A ... - FITA-VNUA
-
Bài Tập Ma Trận Nghịch đảo.pdf (.docx) | Tải Miễn Phí
-
Cách để Tìm Nghịch đảo Của Ma Trận 3x3 - WikiHow
-
TOÁN CAO CẤP 1. BÀI TẬP CÓ LỜI GIẢI. BÀI MA TRẬN NGHỊCH ...
-
Bài Tập Có Lời Giải Chương 1 - SlideShare
-
Bài Tập Toán Cao Cấp 2 - Ma Trận Nghịch đảo Và Phương Trình Ma Trận
-
Cách Tìm Ma Trận Nghịch đảo 2x2, 3x3, 4x4 Chính Xác 100%
-
Phương Pháp Tìm Ma Trận Nghịch đảo Bằng Cách Giải Hệ Phương Trình
-
Bài Tập Ma Trận Nghịch đảo - TaiLieu.VN
-
Hướng Dẫn Giải Bài Toán Dạng Tìm M để Ma Trận Khả Nghịch - Issuu
-
Ma Trận Nghịch đảo Là Gì? Cách Tính Bằng Tay Và Máy Tính - VOH