Đại Số Tuyến Tính - Giải Bài Tập Về Ma Trận Nghịch đảo - Giáo Án

  • Trang chủ
  • Đăng ký
  • Đăng nhập
  • Liên hệ
Giáo Án, Bài Giảng, Giao An, Bai Giang

Giáo Án

Tổng hợp giáo án, bài giảng điện tử phục vụ mục đích tham khảo

Đại số tuyến tính - Giải bài tập về ma trận nghịch đảo

Giải bài tập về ma trận nghịch đảo

Bạn đọc cũng có thể sử dụng phương pháp biến đổi sơ cấp để giải bài này)

Bài 23. Tìm ma trận nghịch đảo của ma trận

 

pdf5 trang | Chia sẻ: liennguyen452 | Lượt xem: 7293 | Lượt tải: 0download Bạn đang xem nội dung tài liệu Đại số tuyến tính - Giải bài tập về ma trận nghịch đảo, để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trênĐẠI SỐ TUYẾN TÍNH §8. Giải bài tập về ma trận nghịch đảo Phiên bản đã chỉnh sửa PGS TS Mỵ Vinh Quang Ngày 29 tháng 12 năm 2004 Bài 21. Tìm ma trận nghịch đảo của ma trận A =  1 0 32 1 1 3 2 2  Giải Cách 1. Sử dụng phương pháp định thức Ta có: detA = 2 + 12− 9− 2 = 3 A11 = ∣∣∣∣∣ 1 12 2 ∣∣∣∣∣ = 0 A21 = − ∣∣∣∣∣ 0 32 2 ∣∣∣∣∣ = 6 A31 = ∣∣∣∣∣ 0 31 1 ∣∣∣∣∣ = −3 A12 = − ∣∣∣∣∣ 2 13 2 ∣∣∣∣∣ = −1 A22 = ∣∣∣∣∣ 1 33 2 ∣∣∣∣∣ = −7 A32 = − ∣∣∣∣∣ 1 32 1 ∣∣∣∣∣ = 5 A13 = ∣∣∣∣∣ 2 13 2 ∣∣∣∣∣ = 1 A23 = − ∣∣∣∣∣ 1 03 2 ∣∣∣∣∣ = −2 A33 = ∣∣∣∣∣ 1 02 1 ∣∣∣∣∣ = 1 Vậy A−1 = 1 3  0 6 −3−1 −7 5 1 −2 1  Cách 2. Sử dụng phương pháp biến đổi sơ cấp Xét ma trận A =  1 0 32 1 1 3 2 2 ∣∣∣∣∣∣∣ 1 0 0 0 1 0 0 0 1  d2→−2d1+d2−−−−−−−→ d3→−3d1+d3  1 0 30 1 −5 0 2 −7 ∣∣∣∣∣∣∣ 1 0 0 −2 1 0 −3 0 1  d3=−2d2+d3−−−−−−−→  1 0 30 1 −5 0 0 3 ∣∣∣∣∣∣∣ 1 0 0 −2 1 0 1 −2 1  d3= 13d3−−−−→  1 0 30 1 −5 0 0 1 ∣∣∣∣∣∣∣ 1 0 0 −2 1 0 1 3 −2 3 1 3  1 −→  1 0 00 1 0 0 0 1 ∣∣∣∣∣∣∣ 0 2 −1 −1 3 −7 3 5 3 1 3 −2 3 1 3  Vậy A−1 =  0 2 −1−13 −73 53 1 3 −2 3 1 3  Bài 22. Tìm ma trận nghịch đảo của ma trận A =  1 3 22 1 3 3 2 1  Giải Ta sử dụng phương pháp định thức. Ta có detA = 1 + 27 + 8− 6− 6− 6 = 18 A11 = ∣∣∣∣∣ 1 32 1 ∣∣∣∣∣ = −5 A21 = − ∣∣∣∣∣ 3 22 1 ∣∣∣∣∣ = 1 A31 = ∣∣∣∣∣ 3 21 3 ∣∣∣∣∣ = 7 A12 = − ∣∣∣∣∣ 2 33 1 ∣∣∣∣∣ = 7 A22 = ∣∣∣∣∣ 1 23 1 ∣∣∣∣∣ = −5 A32 = − ∣∣∣∣∣ 1 22 3 ∣∣∣∣∣ = 1 A13 = ∣∣∣∣∣ 2 13 2 ∣∣∣∣∣ = 1 A23 = − ∣∣∣∣∣ 1 33 2 ∣∣∣∣∣ = 7 A33 = ∣∣∣∣∣ 1 32 1 ∣∣∣∣∣ = −5 Vậy A−1 = 1 18  −5 1 77 −5 1 1 7 −5  (Bạn đọc cũng có thể sử dụng phương pháp biến đổi sơ cấp để giải bài này) Bài 23. Tìm ma trận nghịch đảo của ma trận A =  −1 1 1 1 1 −1 1 1 1 1 −1 1 1 1 1 −1  Giải Ta sử dụng phương pháp 3. 2 Xét hệ  −x1 + x2 + x3 + x4 = y1 (1) x1 − x2 + x3 + x4 = y2 (2) x1 + x2 − x3 + x4 = y3 (3) x1 + x2 + x3 − x4 = y4 (4) (1) + (2) + (3) + (4) =⇒ x1 + x2 + x3 + x4 = 1 2 (y1 + y2 + y3 + y4) (∗) (∗)− (1) =⇒ x1 = 1 4 (−y1 + y2 + y3 + y4) (∗)− (2) =⇒ x2 = 1 4 (y1 − y2 + y3 + y4) (∗)− (3) =⇒ x3 = 1 4 (y1 + y2 − y3 + y4) (∗)− (4) =⇒ x4 = 1 4 (y1 + y2 + y3 − y4) Vậy A−1 = 1 4  −1 1 1 1 1 −1 1 1 1 1 −1 1 1 1 1 −1  Bài 24. Tìm ma trận nghịch đảo của ma trận A =  0 1 1 1 −1 0 1 1 −1 −1 0 1 −1 −1 −1 0  Giải Sử dụng phương pháp 3. Xét hệ  x2 + x3 + x4 = y1 (1) −x1 + x3 + x4 = y2 (2) −x1 − x2 + x4 = y3 (3) −x1 − x2 − x3 = y4 (4) (1) + (2)− (3) + (4) =⇒ −x1 + x2 + x3 + x4 = y1 + y2 − y3 + y4 (∗) (1)− (∗) =⇒ x1 = −y2 + y3 − y4 (∗)− (2) =⇒ x2 = y1 − y3 + y4 (4) =⇒ x3 = −x1 − x2 − y4 = −y1 + y2 − y4 (3) =⇒ x4 = x1 + x2 + y3 = y1 − y2 + y3 3 Vậy A−1 =  0 −1 1 −1 1 0 −1 1 −1 1 0 −1 1 −1 1 0  Bài 25. Tìm ma trận nghịch đảo của ma trận 1 1 1 · · · 1 0 1 1 · · · 1 0 0 1 · · · 1 ... ... ... . . . ... 0 0 0 · · · 1  n×n Giải Sử dụng phương pháp 3. Xét hệ  x1 + x2 + · · ·+ xn = y1 (1) x2 + · · ·+ xn = y2 (2) ... xn−1 + xn = yn−1 (n− 1) xn = yn (n) (1)− (2) =⇒ x1 = y1 − y2 (2)− (3) =⇒ x2 = y2 − y3 ... (n− 1)− (n) =⇒ xn−1 = yn−1 − yn (n) =⇒ xn = yn Vậy A−1 =  1 −1 0 0 · · · 0 0 0 1 −1 0 · · · 0 0 ... ... ... ... . . . 0 0 0 0 0 0 · · · 1 −1 0 0 0 0 · · · 0 1  4 Bài 26. Tìm ma trận nghịch đảo của ma trận A =  1 + a 1 1 · · · 1 1 1 + a 1 · · · 1 1 1 1 + a · · · 1 ... ... ... . . . ... 1 1 1 · · · 1 + a  Giải Sử dụng phương pháp 3. Xét hệ  (1 + a)x1 + x2 + x3 + · · ·+ xn = y1 (1) x1 + (1 + a)x2 + x3 + · · ·+ xn = y2 (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x1 + x2 + x3 + · · ·+ (1 + a)xn = yn (n) Lấy (1) + (2) + · · ·+ (n), ta có (n+ a)(x1 + x2 + · · ·+ xn) = y1 + y2 + · · ·+ yn 1. Nếu a = −n, ta có thể chọn tham số y1, y2, . . . , yn thỏa y1 + · · ·+ yn 6= 0. Khi đó hệ vô nghiệm và do đó ma trận A không khả nghịch. 2. Nếu a 6= −n, khi đó ta có x1 + x2 + · · ·+ xn = 1 n+ a (y1 + · · ·+ yn) (∗) (1)− (∗) =⇒ ax1 = 1 n+ a ((n+ a− 1)y1 − y2 − · · · − yn) (a) Nếu a = 0, ta có thể chọn tham số y1, y2, . . . , yn để phương trình trên vô nghiệm. Do đó hệ vô nghiệm và ma trận A không khả nghịch. (b) Nếu a 6= 0, ta có x1 = 1 a(n+ a) ((n+ a− 1)y1 − y2 − · · · − yn) (2)− (∗) =⇒ x2 = 1 a(n+ a) (y1 − (n+ a− 1)y2 − y3 − · · · − yn) ... (n)− (∗) =⇒ xn = 1 a(n+ a) (y1 − y2 − y3 − · · · − (n+ a− 1)yn) Vậy A−1 = 1 a(n+ a)  n+ a− 1 −1 −1 · · · −1 −1 n+ a− 1 −1 · · · −1 −1 −1 n+ a− 1 · · · −1 ... ... ... . . . ... −1 −1 −1 · · · n+ a− 1  n×n 5

File đính kèm:

  • pdfDS2011-08-20041229-thayQuang-bai8.pdf
Giáo án liên quan
  • Đề Cương Ôn Tập Toán Lớp 11 Học Kỳ I

    9 trang | Lượt xem: 1122 | Lượt tải: 0

  • Đề ôn tập học kì 2 – Năm học môn Toán lớp 10 - Đề số 13

    2 trang | Lượt xem: 976 | Lượt tải: 0

  • Chuyên đề 2 Hệ phương trình đại số tóm tắt giáo khoa

    4 trang | Lượt xem: 901 | Lượt tải: 0

  • Giáo án Đại số 10 nâng cao Luyện tập- Một số phương trình và bất phương trình quy về bậc hai

    5 trang | Lượt xem: 2033 | Lượt tải: 0

  • Đề thi số 2 lớp 10

    4 trang | Lượt xem: 1107 | Lượt tải: 0

  • Đề kiểm tra 1 tiết môn: Hình học 10 (nâng cao)

    3 trang | Lượt xem: 1133 | Lượt tải: 0

  • Giáo án Toán 10 - Đại số - Tiết 48: Luyện tập

    3 trang | Lượt xem: 1218 | Lượt tải: 0

  • Bài giảng Tiết 8, 9: Luyện tập tập hợp và các phép toán trên tập hợp (tiếp)

    3 trang | Lượt xem: 1722 | Lượt tải: 4

  • Giáo án Hình học 10 - Chương I: Tập hợp, mệnh - Đề: Bài 1: Mệnh đề

    4 trang | Lượt xem: 1109 | Lượt tải: 0

  • Giáo án Hình học lớp 10 nâng cao - Tiết 47: Ôn Tập Cuối Năm

    4 trang | Lượt xem: 952 | Lượt tải: 0

Copyright © 2024 ThuVienGiaoAn.vn - Các bài soạn văn mẫu tham khảo - Thủ Thuật Phần Mềm - PDF

ThuVienGiaoAN.vn on Facebook Follow @ThuVienGiaoAN

Từ khóa » Bài Tập Ma Trận Nghịch đảo Cấp 3