Đạo Hàm Của Hàm Số \(y = \log X\) Là
Có thể bạn quan tâm
- Câu hỏi:
Đạo hàm của hàm số \(y = \log x\) là
- A. \(y' = \frac{1}{x}.\)
- B. \(y' = \frac{{\ln 10}}{x}.\)
- C. \(y' = \frac{1}{{x\ln 10}}.\)
- D. \(y' = \frac{1}{{10\ln x}}.\)
Lời giải tham khảo:
Đáp án đúng: C
\(\log x = \frac{1}{{x\ln 10}}.\)
Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
ATNETWORK
Mã câu hỏi: 268509
Loại bài: Bài tập
Chủ đề :
Môn học: Toán Học
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
-
Đề thi thử THPT QG năm 2021 môn Toán - Trường THPT Võ Thị Sáu lần 2
50 câu hỏi | 90 phút Bắt đầu thi
Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- Diện tích mặt cầu (S) tâm I đường kính bằng a là
- Nghiệm của phương trình \({{2}^{2x+1}}=32\) bằng
- Cho hàm số \(y=h\left( x \right)\) có bảng biến thiên như sau: Hàm số đạt cực đại tại điểm
- Cho cấp số cộng \(\left( {{u}_{n}} \right)\) có \({{u}_{3}}=-7;\,\,{{u}_{4}}=8\). Hãy chọn mệnh đề đúng
- Cho tập hợp M có 10 phần tử. Số tập con gồm 2 phần tử của M là
- Phần ảo của số phức z=2-3i là giá trị nào
- Cho hàm số y=f(x) có bảng biến thiên như hình sau Hàm số y=f(x) đồng biến trên khoảng nào dưới đây?
- Cho khối lăng trụ có đáy là hình vuông cạnh a và chiều cao bằng 2a. Thể tích của khối lăng trụ đã cho bằng
- Số phức \(z=a+bi\,\,\left( a,b\in \mathbb{R} \right)\) có điểm biểu diễn như hình vẽ bên dưới. Tìm a và b
- Cho hàm số \(f\left( x \right)\) có đạo hàm trên \(\mathbb{R},f\left( -1 \right)=-2\) và \(f\left( 3 \right)=2\). Tính \(I=\int\limits_{-1}^{3}{{f}'\left( x \right)dx}\).
- Tìm số phức liên hợp của số phức \(z = \left( {2 - i} \right)\left( {1 + 2i} \right)\)
- Gọi M, m lần lượt là giá trị lớn nhất, nhỏ nhất của hàm số \(f\left( x \right)=\frac{x+1}{x-1}\) trên \(\left[ -3;-1 \right]\). Khi đó M.m bằng
- Đồ thị hình vẽ bên là đồ thị của hàm số nào?
- Hs nào dưới đây đồng biến trên tập \(\mathbb{R}\)
- Rút gọn biểu thức \(P={{x}^{\frac{1}{5}}}.\sqrt[3]{x}\) với x>0.
- Tính tích phân \(\int\limits_2^6 {\frac{1}{x}dx} \) bằng.
- Cho \(I=\int\limits_{0}^{2}{f(x)d}x=3.\) Khi đó \(J=\int\limits_{0}^{2}{\left[ 4f\left( x \right)-3 \right]dx}\) bằng:
- Cho hàm số \(y=f\left( x \right)\) xác định, liên tục trên đoạn \(\left[ -1;3 \right]\) và có đồ thị là đường cong trong hình vẽ bên. Tập hợp T tất cả các giá trị thực của tham số m để phương trình \(f\left( x \right)=m\) có 3 nghiệm phân biệt thuộc đoạn \(\left[ -1;3 \right]\) là:
- Một khối trụ có thể tích bằng \(6\pi \). Nếu giữ nguyên chiều cao và tăng bán kính đáy của khối trụ đó gấp 3 lần thì thể tích của khối trụ mới bằng bao nhiêu?
- Họ nguyên hàm của hàm số \(f\left( x \right) = x + \sin 2x\) là.
- Đạo hàm của hàm số \(y = \log x\) là
- Gọi V là thể tích khối lập phương ABCD.A'B'C'D', V' là thể tích khối tứ diện A'.ABD. Hệ thức nào dưới đây là đúng.
- Trong không gian hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right):{{\left( x-5 \right)}^{2}}+{{\left( y-1 \right)}^{2}}+{{\left( z+2 \right)}^{2}}=9\). Bán kính R của (S) là
- Nghiệm của bất phương trình \({\log _2}\left( {3{\rm{x}} - 1} \right) > 3\) là
- Trong không gian với hệ trục tọa độ Oxyz, cho hai vectơ \(\overrightarrow{a}=\left( 2;1;0 \right)\) và \(\overrightarrow{b}=\left( -1;0;-2 \right)\). Khi đó \(\cos \left( \overrightarrow{a},\overrightarrow{b} \right)\) bằng
- Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{x+1}{1}=\frac{y}{-3}=\frac{z-5}{-1}\) và mặt phẳng \(\left( P \right):3x-3y+2z+6=0\). Mệnh đề nào dưới đây đúng?
- Tập nghiệm của phương trình \(\log \left( {{x^2} - 1} \right) = \log \left( {2x - 1} \right)\)
- Trong không gian Oxyz, cho điểm \(A\left( 1\,;\,2\,;\,3 \right)\) và đường thẳng \(d:\frac{x-3}{2}=\frac{y-1}{1}=\frac{z+7}{-2}\). Đường thẳng đi qua A và song song với đường thẳng d có phương trình là:
- Cho hình lập phương ABCD.A'B'C'D' (hình vẽ bên dưới). Góc giữa hai đường thẳng AC và A'D bằng
- Trong không gian với hệ tọa độ Oxyz, phươg trình nào dưới đây là phương trình mặt cầu có tâm \(I\left( 1;2;-1 \right)\)
- Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, hai mặt \(\left( SAB \right);\left( SAD \right)\) cùng vuông góc với mặt phẳng \(\left( ABCD \right)\); góc giữa đường thẳng SC và mặt phẳng \(\left( ABCD \right)\) bằng \({{60}^{0}}\). Tính theo a thể tích của khối chóp S.ABCD.
- Một vật chuyển động với vận tốc \(v\left( t \right)\left( m/s \right)\) có gia tốc \(a\left( t \right)=3{{t}^{2}}+t\left( m/{{s}^{2}} \right)\). Vận tốc ban đầu của vật là \(2\left( m/s \right)\). Hỏi vận tốc của vật sau 2s
- Cho hàm số \(y=f\left( x \right)\) có đạo hàm \(f'\left( x \right)=\left( {{e}^{x}}+1 \right)\left( {{e}^{x}}-12 \right)\left( x+1 \right){{\left( x-1 \right)}^{2}}\) trên \(\mathbb{R}\). Hỏi hàm số \(y=f\left( x \right)\) có bao nhiêu điểm cực trị?
- Đồ thị \(\left( C \right)\) của hàm số \(y=\frac{\left( a+1 \right)x+2}{x-b+1}\) nhận gốc tọa độ O làm tâm đối xứng thì tổng a+b là
- Câu 35. Một nhóm học sinh gồm 6 bạn nam và 4 bạn nữ đứng ngẫu nhiên thành 1 hàng. Xác suất để có đúng 2 trong 4 bạn nữ đứng cạnh nhau là
- Tìm số phức z thỏa mãn \(z+2-3i=2\overline{z}.\)
- Tìm giá trị thực của tham số m để phương trình \({{9}^{x}}-{{2.3}^{x+1}}+m=0\) có hai nghiệm thực \({{x}_{1}}, {{x}_{2}}\) thỏa mãn \({{x}_{1}}+{{x}_{2}}=1\).
- Cho hình chóp tứ giác S.ABCD có đáy là hình thang vuông tại A, D, AB=AD=a, CD=2a. Cạnh bên SD vuông góc với đáy \(\left( ABCD \right)\) và SD=a. Tính khoảng cách từ A đến \(\left( SBC \right)\).
- Tất cả các giá trị của tham số m để hàm số \(y=\left( m-1 \right){{x}^{4}}\) đạt cực đại tại x=0 là:
- Gọi S là diện tích hình phẳng giới hạn bởi parabol \(\left( P \right),\) tiếp tuyến với \(\left( P \right)\) tại điểm \(A\left( 1;-1 \right)\) và đường thẳng x=2 (như hình vẽ). Tính S.
- Cho hai số phức \({{z}_{1}},{{z}_{2}}\) thỏa mãn \(\left| {{z}_{1}} \right|=2,\left| {{z}_{2}} \right|=\sqrt{3}\). Gọi M, N lần lượt là điểm biểu diễn cho \({{z}_{1}}\) và \(i{{z}_{2}}\). Biết \(\widehat{MON}={{30}^{0}}\). Tính \(S=\left| z_{1}^{2}+4z_{2}^{2} \right|\)
- Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x+y+z-3=0\) và đường thẳng \(d:\frac{x}{1}=\frac{y+1}{2}=\frac{z-2}{-1}.\) Hình chiếu vuông góc của d trên \(\left( P \right)\) có phương trình là
- Cho hàm số Tính \(I = 2\int\limits_0^{\frac{\pi }{2}} {f\left( {\sin x} \right)\cos xdx} + 3\int\limits_0^1 {f\left( {3 - 2x} \right)dx} \)
- Cho hàm số \(y=f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và \(f\left( 1 \right)=1\). Đồ thị hàm số \(y={f}'\left( x \right)\) như hình bên. Có bao nhiêu số nguyên dương a để hàm số \(y=\left| 4f\left( \sin x \right)+\cos 2x-a \right|\) nghịch biến trên \(\left( 0;\frac{\pi }{2} \right)\)?
- Có một khối gỗ là khối lăng trụ đứng \(ABC.{A}'{B}'{C}'\) có \(AB=30\text{ cm}, BC=40\text{ cm}, CA=50\text{ cm}\) và chiều cao \(A{A}'=100\text{ cm}\). Từ khối gỗ này người ta tiện để thu được một khối trụ có cùng chiều cao với khối gỗ ban đầu. Thể tích lớn nhất của khối trụ gần nhất với giá trị nào dưới đây?
- Có bao nhiêu cặp số nguyên \(\left( x;y \right)\) thỏa mãn \(0\le x\le 3000\) và \(3\left( {{9}^{y}}+2y \right)=x+{{\log }_{3}}{{\left( x+1 \right)}^{3}}-2\)?
- Cho hàm số y=f(x) có đạo hàm trên \(\left[ -4\ ;\ 4 \right]\), có các điểm cực trị trên \(\left( -4\ ;\ 4 \right)\) là -3; \(-\frac{4}{3}\); 0; 2 và có đồ thị như hình vẽ. Đặt hàm số \(y=g(x)=f({{x}^{3}}+3x)+m\) với m là tham số. Gọi \({{m}_{1}}\) là giá trị của m để \(\underset{\left[ 0\ ;\ 1 \right]}{\mathop{\max }}\,g(x)=4, {{m}_{2}}\) là giá trị của m để \(\underset{\left[ -1\ ;\ 0 \right]}{\mathop{\min }}\,g(x)=-2\). Giá trị của \({{m}_{1}}+{{m}_{2}}\) bằng.
- Có bao nhiêu số nguyên dươg y để tập nghiệm của bất phươg trình \(\left( {{\log }_{2}}x-\sqrt{2} \right)\left( {{\log }_{2}}x-y
- Cho hàm số \(y=f\left( x \right)\) nhận giá trị dương và có đạo hàm \({f}'\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn \(\int\limits_{0}^{x}{\left[ {{f}^{2}}\left( t \right)+{{\left( {f}'\left( t \right) \right)}^{2}} \right]}dt={{\left( f\left( x \right) \right)}^{2}}-2018\). Tính \(f\left( 1 \right)\)
- Trong hệ tọa độ \(\text{O}xyz\), cho điểm \(A\left( 2;1;3 \right)\), mặt phẳng \((\alpha ):2x+2y-z-3=0\) và mặt cầu \((S):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-6x-4y-10z+2=0\). Gọi \(\Delta \) là đường thẳng đi qua A, nằm trong mặt phẳng \((\alpha )\) và cắt (S) tại hai điểm M,N. Độ dài đoạn MN nhỏ nhất là:
XEM NHANH CHƯƠNG TRÌNH LỚP 12
Toán 12
Lý thuyết Toán 12
Giải bài tập SGK Toán 12
Giải BT sách nâng cao Toán 12
Trắc nghiệm Toán 12
Giải tích 12 Chương 3
Đề thi giữa HK1 môn Toán 12
Ngữ văn 12
Lý thuyết Ngữ Văn 12
Soạn văn 12
Soạn văn 12 (ngắn gọn)
Văn mẫu 12
Soạn bài Người lái đò sông Đà
Đề thi giữa HK1 môn Ngữ Văn 12
Tiếng Anh 12
Giải bài Tiếng Anh 12
Giải bài Tiếng Anh 12 (Mới)
Trắc nghiệm Tiếng Anh 12
Unit 7 Lớp 12 Economic Reforms
Tiếng Anh 12 mới Review 1
Đề thi giữa HK1 môn Tiếng Anh 12
Vật lý 12
Lý thuyết Vật Lý 12
Giải bài tập SGK Vật Lý 12
Giải BT sách nâng cao Vật Lý 12
Trắc nghiệm Vật Lý 12
Vật lý 12 Chương 3
Đề thi giữa HK1 môn Vật Lý 12
Hoá học 12
Lý thuyết Hóa 12
Giải bài tập SGK Hóa 12
Giải BT sách nâng cao Hóa 12
Trắc nghiệm Hóa 12
Hoá Học 12 Chương 4
Đề thi giữa HK1 môn Hóa 12
Sinh học 12
Lý thuyết Sinh 12
Giải bài tập SGK Sinh 12
Giải BT sách nâng cao Sinh 12
Trắc nghiệm Sinh 12
Ôn tập Sinh 12 Chương 5
Đề thi giữa HK1 môn Sinh 12
Lịch sử 12
Lý thuyết Lịch sử 12
Giải bài tập SGK Lịch sử 12
Trắc nghiệm Lịch sử 12
Lịch Sử 12 Chương 2 Lịch Sử VN
Đề thi giữa HK1 môn Lịch Sử 12
Địa lý 12
Lý thuyết Địa lý 12
Giải bài tập SGK Địa lý 12
Trắc nghiệm Địa lý 12
Địa Lý 12 VĐSD và BVTN
Đề thi giữa HK1 môn Địa lý 12
GDCD 12
Lý thuyết GDCD 12
Giải bài tập SGK GDCD 12
Trắc nghiệm GDCD 12
GDCD 12 Học kì 1
Đề thi giữa HK1 môn GDCD 12
Công nghệ 12
Lý thuyết Công nghệ 12
Giải bài tập SGK Công nghệ 12
Trắc nghiệm Công nghệ 12
Công nghệ 12 Chương 3
Đề thi giữa HK1 môn Công nghệ 12
Tin học 12
Lý thuyết Tin học 12
Giải bài tập SGK Tin học 12
Trắc nghiệm Tin học 12
Tin học 12 Chương 2
Đề thi giữa HK1 môn Tin học 12
Cộng đồng
Hỏi đáp lớp 12
Tư liệu lớp 12
Xem nhiều nhất tuần
Video: Vợ nhặt của Kim Lân
Video ôn thi THPT QG môn Toán
Video ôn thi THPT QG môn Văn
Video ôn thi THPT QG môn Sinh
Video ôn thi THPT QG môn Vật lý
Video ôn thi THPT QG Tiếng Anh
Video ôn thi THPT QG môn Hóa
Tây Tiến
Ai đã đặt tên cho dòng sông
Sóng- Xuân Quỳnh
Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX
Người lái đò sông Đà
Quá trình văn học và phong cách văn học
Đất Nước- Nguyễn Khoa Điềm
Đàn ghi ta của Lor-ca
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON QC Bỏ qua >>Từ khóa » đạo Hàm Log X
-
Đạo Hàm Log X ? Bảng đạo Hàm Logarit đầy đủ Chi Tiết Kèm Bài Tập
-
[LỜI GIẢI] Tìm đạo Hàm Của Hàm Số Y = Log X. - Tự Học 365
-
Hiểu đúng Và Giải Nhanh đạo Hàm Log X
-
Bảng đạo Hàm Của Các Hàm Số Cơ Bản (thường Gặp) - MathVn.Com
-
Tìm đạo Hàm Của Hàm Số $y = \log X$
-
Tìm đạo Hàm Của Hàm Số \(y = \log X\).
-
Tìm Đạo Hàm - D/dx Logarit Của Xe^x | Mathway
-
Công Thức đạo Hàm: Log, Logarit, Căn Bậc 3, Căn X, Lượng Giác Chuẩn ...
-
Khái Niệm đạo Hàm Logarit Và Các Bài Tập Mẫu Có Lời Giải Chi Tiết
-
Tính đạo Hàm Của Hàm Số Logarit Y=log(x) - Qanda | Ai
-
Đạo Hàm Của Hàm Số Y=logx Là...
-
Công Thức Tính Đạo Hàm Logarit. Bài Tập Minh Họa Có Lời Giải ...
-
Đạo Hàm Của Logarit - Log (x) ' - RT