Đáp án Bài Tập Cuối Khóa Module (mô đun) 3 Môn Toán 11 Theo ...

Bài tập cuối khóa Module 3 toán 11. Bạn đã sắp hoàn thành module 3 nhưng lại vướng mắc bài tập cuối khóa tìm hoài không ra. Bạn không còn phải bắn khoản, suy nghĩ và tìm kiếm bài tập để hoàn thành mở đun 3 nữa. Chỉ bằng 1 ly cà phê thôi bạn nhỉ... Khỏi phải nhức đầu.

Trang 1

KẾ HOẠCH BÀI DẠY TÊN CHỦ ĐỀ/ 1 BÀI HỌC: CẤP SỐ CỘNG

Thời lượng: 1 tiết

I MỤC TIÊU DẠY HỌC

của YCCĐ) NĂNG LỰC TOÁN HỌC

Năng lực mô hình hóa

toán học

+ Mô tả được ý nghĩa của kết quả (CSC) của tình huốngđặt ra: tổ chức cho các nhóm thực hiện bài toán khởi độngthông qua tình huống đặt ra

+ Vận dụng được kiến thức CSC để giải quyết được cácbài toán thực tiển, liên môn

(1)

Năng lực giải quyết

vấn đề toán học + Trình bày, diễn đạt, nêu câu hỏi, thảo luận, tranh luậntrong quá trình tìm hiểu và tiếp cận khái niệm, công thức CSC

+ Sử dụng định nghĩa, công thức số hạng tổng quát và tổngcủa n số hạng đầu tiên của cấp số cộng trình bày bài giải chính xác, rõ ràng, xúc tích

(2)

NĂNG LỰC CHUNG

Năng lực giao tiếp và

hợp tác

+ Biết lắng nghe và có phản hồi tích cực trong giao tiếp;

nhận biết được đặc điểm, thái độ của đối tượng giao tiếp

+ Hiểu rõ nhiệm vụ của nhóm; đánh giá được khả năng của mình và tự nhận công việc phù hợp với bản thân

(3)

Năng lực giải quyết

vấn đề và sáng tạo

- Nhận biết được một dãy số là cấp số cộng

– Xác định số hạng tổng quát của cấp số cộng, công sai

- Tính tổng của n số hạng đầu tiên của cấp số cộng– Giải quyết được ( mô hình hóa toán học) một số vấn đề thực tiễn gắn với cấp số cộng để giải một số bài toán liên quan đến thực tiễn (ví dụ: một số vấn đề trong Sinh học, trong Giáo dục dân số,…)

(4)

PHẨM CHẤT

Chăm chỉ Tích cực trong hoạt động cá nhân, hoạt động nhóm

Tự giác thực hiện các nhiệm vụ và rèn luyện ở nhà (5)

II THIẾT BỊ DẠY HỌC VÀ HỌC LIỆU

+ Phiếu học tập

+ Ti vi tương tác, máy tính, webcam

III TIẾN TRÌNH DẠY HỌC

Nội dung dạy học trọng tâm

PP/KTDH chủ đạo

Phương pháp và công cụ đánh giá

HĐ1

Khởi động

(9phút)

(1)(2)(3)

1 Về nguyên tắc: đây là KHBD cho chủ đề

Trang 2

CSC:

- Tìm được dấu hiệu đặctrưng của cấp số cộng trongbài toán mở đầu

- Mô tả được dấu hiệu đặctrưng về số người biết câutruyện qua các ngày (các sốhạng của 1 CSC có số đứngsau bằng số đứng ngay trước

nó cộng với một số khôngđổi)

- Biểu diễn được bài toánbằng đại số trong toán học

- Hình thành khái niệmCSC từ thực tế trải nghiệmthông qua HĐ khởi động

- Hiểu khái niệm CSC

- Nhận biết được một dãy số

là cấp số cộng

-Dạy học giải quyếtvấn đề

- Đàm thoại, thuyếttrình

- Hình thành CT số hạng tổngquát CSC

- Dạy học toán quatranh luận khoa học

- Đàm thoại, thuyếttrình

-Vận dụng kiến thức đã họcgiải quyết các vấn đề thựctiễn

-Dạy học mô hìnhhóa

-Tiếp tục khắc sâu kiến thứcvừa được học qua các bài tập Dạy học giải quyếtvấn đề, tự học cá

Trang 3

hai bàn) Từng học sinh và các nhóm sẽ thực hiện hoạt động theo yêu cầu của GV, ghi nhận kết quả và trình bày.

– GV thông báo nhiệm vụ cho mỗi nhóm (Trình chiếu yêu cầu của hoạt động - Chuyển giao nhiệm vụ họctập) và giám sát các hoạt động của học sinh

- Học sinh nghiên cứu cá nhân các yêu cầu đặt ra của giáo viên trong các tình huống trên

- Học sinh thảo luận theo nhóm về kết quả đã nghiên cứu được và thống nhất trong nhóm

- Đại diện nhóm trình bày kết quả thảo luận theo yêu cầu của giáo viên

- GV nhận xét câu trả lời của HS:

Tình huống: Một người kể cho 2 người bạn mình nghe chuyện bí mật và hai người bạn kia đã

kể nó cho nhiều người khác biết.

Nhiệm vụ 1:

- GV đặt vấn đề cho học sinh giải quyết

+ Chắc chắn sẽ có người có nhu cầu muốn biết có bao nhiêu người biết câu chuyện bí mật đó sau một số ngày.

+ Giả sử: nếu cứ một ngày hai người bạn đó kể chuyện cho 2 người khác nghe thì số người biết chuyện đó trong ngày thứ 2,3, 4, 5,6… là bao nhiêu?( Giả sử người đầu tiên biết câu chuyện là ở ngày thứ 1)

Học sinh suy nghĩ và trả lời câu hỏi: (Câu trả lời mong đợi)

Số người biết câu chuyện bí mật đó trong ngày thứ 2,3, 4, 5,6… là 3,5,7,9,11…

Nhiệm vụ 2:

– Sau khi các nhóm đã hoàn thành nhiệm vụ 1, GV yêu cầu tiếp:

Từ những số liệu trên, các em hãy nêu cách mà các em tìm số người biết câu chuyện qua các ngày và có nhận xét gì về các số liệu này?

Học sinh suy nghĩ và trả lời câu hỏi: (Câu trả lời mong đợi)

Số người biết câu chuyện bí mật này lập thành 1 dãy số có tính chất số hạng đứng sau bằng số hạng đứng ngay trước nó cộng thêm 2

- GV giới thiệu:

“Một dãy số có tính chất tương tự như trên được gọi là “cấp số cộng”

- Đánh giá giữa các học sinh

- HS báo cáo kết quả thực hiện nhiệm vụ học tập

- Giáo viên đánh giá kết quả thực hiện nhiệm vụ học tập của học sinh dựa trên yêu cầu đặt ra

3 Sản phẩm học tập

- Phần thuyết trình, báo cáo kết quả làm việc của đại diện nhóm qua phiếu học tập số 1

- Phiếu đánh giá của các nhóm học sinh

4 Phương án đánh giá:

* Phương pháp đánh giá: Quan sát, đánh giá qua sản phẩm học tập (phiếu học tập số 1)

* Công cụ đánh giá: Bảng kiểm

HĐ2 (9 phút) Tìm hiểu khái niệm CSC

- YCCĐ: HS thảo luận, phát biểu đúng và định nghĩa được CSC

- Năng lực: (2); (3); (5)

- Phương pháp dạy học: Đàm thoại, thuyết trình, dạy học giải quyết vấn đề.

- Hình thức tổ chức dạy học: Hoạt động nhóm, cá nhân.

- Dự kiến sản phẩm đánh giá: Phần thuyết trình, báo cáo kết quả làm việc của học sinh qua phiếu học

tập số 2 và bài toán ở ví dụ 4

- Phương án đánh giá

+ Phương pháp đánh giá: Vấn đáp

Trang 4

+Cơng cụ đánh giá: Câu hỏi.

- Giáo viên cho học sinh thảo

luận phân tích 2 ví dụ trên và

khái quát hĩa khái niệm CSC

- Học sinh thực hiện nhiệm vụ

theo yêu cầu của giáo viên

- Giáo viên yêu cầu học sinh phát

biểu khái niệm CSC

- Giáo viên nhận xét câu trả lời

của HS và chính xác hĩa khái

niệm CSC

c) Cũng cố

- Giáo viên yêu cầu học sinh cho

ví dụ về CSC, tìm số hạng thứ k

và tìm cơng sai của CSC

- Giáo viên đánh giá kết quả

thực hiện nhiệm vụ học tập

của học sinh

- Học sinh thảo luận theo nhĩm đơi và thực hiệnnhiệm vụ được giao

- Câu trả lời mong đợi của học sinh:

Hai số hạng liên tiếp cách nhau

Số d được gọi là cơng sai của cấp số cộng.

Nếu ( )u là cấp số cộng với cơng n

sai d , ta cĩ cơng thức truy hồi

* 1

u  ud với n 

Đặc biệt: Khi d 0 thì cấp số cộng là dãy số khơng đổi.

Ví dụ 4: CM dãy số: ( ) u với n

*

,5

n

n

là CSC, tìm

số hạng đầu và cơng sai.

HĐ3(9 phút) Tìm hiểu cơng thức tính số hạng tổng quát

- YCCĐ: HS thảo luận, thực hiện các nhiệm vụ và xác định được cơng thức số hạng tổng quát của CSC

- Năng lực: (2); (3); (5)

- Phương pháp dạy học: dạy học tốn qua tranh luận khoa học, đàm thoại, thuyết trình.

- Hình thức tổ chức dạy học: Hoạt động nhĩm, cá nhân.

- Dự kiến sản phẩm đánh giá: Phần thuyết trình, báo cáo kết quả làm việc của học sinh qua phiếu học

chương 5 trong trường hợp HS chưa học thuộc bảng cửu

Trang 5

Nhiệm vụ 1: GV yêu cầu HS

Nêu cách tính số hạng thứ 9

trong bảng cửu chương 5 trong

trường hợp HS chưa học thuộc

bảng cửu chương?

Nhiệm vụ 2: GV quay lại câu

chuyện vào đầu bài để dẫn dắt

HS tới việc tính toán một số hạng

bất kì trong CSC ?

- GV yêu cầu tính số người biết

câu chuyện bí mật đó sau hai, ba,

tư, năm ngày

- GV yêu cầu HS: Tính số

người biết được câu chuyện đó

trong ngày thứ 1000?

- GV yêu cầu HS tổng quát cách

tính số người biết câu chuyện đó

trong ngày thứ n

- GV nhận xét câu trả lời của HS

- GV nhận xét“Việc tính toán

một số hạng bất kì trong cấp số

cộng cũng tương tự như vậy” và

đi tới cách tính số hạng tổng quát

khi biết số hạng đầu và công sai

Nhiệm vụ 1: GV yêu cầu HS:

Trong tình huống đầu bài: Xác

định trải qua bao nhiêu ngày thì

47 và 111 người biết câu chuyện

đó?

- Câu trả lời mong đợi của HS là:

Lấy 5 và cộng thêm với 5 tám lần

sẽ ra kết quả 45.

- HS thảo luận nhóm và trình bàykết quả

- GV giám sát hoạt động các nhóm, dẫn dắt HS các nhóm tranh luận trình bày kết quả

- Kết quả mong đợi

•Ngày thứ hai có 3 người biết câu chuyện bí mật Dựa vào số hạng đầu và công sai ta có: 3 =

- HS tính theo yêu cầy GV Kết

quả mong đợi: Số người biết chuyện trong ngày thứ 1000 = 1 + 999.2

- HS nêu cách tính số người biết câu chuyện trong ngày thứ n Kếtquả mong đợi: : 1 + (n – 1).2

- Kết quả mong đợi: u n = u 1 + (n – 1)d với n ≥ 2.

-HS mô hình hóa toán hoc tình huống thực tiễn

- Câu trả lời mong đợi:

chương?

Nhiệm vụ 2: Ở câu chuyện đầu bài:

- Tính số người biết câu chuyện

bí mật đó sau hai, ba, tư, năm ngày

- Tính số người biết được câu chuyện đó trong ngày thứ 1000?

- Tổng quát cách tính số người biết câu chuyện đó trong ngày thứ n

Tính chất: Cho cấp số cộng ( ) u n

Khi đó

1 1, 22

Trang 6

Nhiệm vụ 2: GV yêu cầu HS

thực hiện tiếp theo:

Vào ngày thứ 58 thì số người biết

được chuyện bí mật đó là bao

- Vào ngày thứ 58 thì số người biết được chuyện bí mật đó là bao nhiêu

HĐ4 (9 phút) Tìm hiểu công thức tính n số hạng đầu của CSC.

- YCCĐ: HS thảo luận, phát biểu đúng và hiểu công thức tính tổng n số hạng đầu của CSC

- Năng lực: (2); (3); (5)

- Phương pháp dạy học: Dạy học toán qua tranh luận khoa học, dạy học giải quyết vấn đề.

- Hình thức tổ chức dạy học: Hoạt động nhóm, cá nhân.

- Dự kiến sản phẩm đánh giá: Phần thuyết trình, báo cáo kết quả làm việc của học sinh qua phiếu học

tập số 4 và bài toán ở ví dụ 6

- Phương án đánh giá

+ Phương pháp đánh giá: Vấn đáp

+Công cụ đánh giá: Câu hỏi

Kết quả mong đợi của học sinh

- Kết quả mong đợi của học sinh: Rút ra kết luận

1 8 8

1042

- Hoc sinh thảo luân theo

Trang 7

c) Củng cố:

- GV trình chiếu yêu cầu

học sinh trải nghiệm

- Sử dung pp/kỹ thuật mô hình hóa toán học, đàm thoại, thuyết trình

- GV thông báo nhiệm vụ cho mỗi nhóm (Trình chiếu yêu cầu của hoạt động - Chuyển giao nhiệm vụ họctập) và giám sát các hoạt động của học sinh

- Học sinh thảo luận theo nhóm về kết quả đã nghiên cứu được và thống nhất trong nhóm

- Đại diện nhóm trình bày kết quả thảo luận theo yêu cầu của giáo viên

+ Nhiệm vụ 1: Một công ty trả lương cho anh A theo phương thức sau: Mức lương quý đầu tiên là 4,5triệu đồng/ quý Kể từ quý tiếp theo, mỗi quý được tăng thêm 0,3 triệu đồng Hỏi tổng số tiền lương anh Anhận được sau 3 năm làm việc

+ Nhiệm vụ 2: Từ 0 giờ đến 12 giờ trưa, đồng hồ đánh bao nhiêu tiếng chuông, nếu nó chỉ đánh chuông báo giờ và số tiếng chuông bằng số giờ ?

3 Sản phẩm học tập

- Phần thuyết trình, báo cáo kết quả làm việc của học sinh

4 Phương án đánh giá:

*Phương pháp đánh giá: Đánh giá qua sản phẩm học tập

*Công cụ đánh giá: Rubrics

HĐ6(2 phút) Luyện tập và vận dụng (ở nhà)

1 Mục tiêu: (1); (4); (5)

2 Tổ chức hoạt động

- Sử dung pp/kỹ thuật mô hình hóa toán học, đàm thoại, thuyết trình

– GV yêu cầu mỗi HS về nhà tự thực hiện

1/ Thực hiện bài tập (phần tự luận và trắc nghiệm trong tài liệu học tập của khối 11- trình bày bên dưới)2) Vận dụng kiến thức vào giải quyết các bài toán thực tiễn ( trong phần trình bày bên dưới) và mở rộng tìm thêm các ứng dụng của CSC trong cuộc sống

Trang 8

*Công cụ đánh giá:

- Học sinh tự đánh giá, tự đánh giá lẫn nhau giữa các học sinh cùng tổ, cùng lớp

- GV đánh giá xác suất sản phẩm của một số học sinh (số lượng, chất lượng)

IV HỒ SƠ DẠY HỌC

A NỘI DUNG DẠY HỌC CỐT LÕI

1 Định nghĩa Cấp số cộng

Cấp số cộng là một dãy số (hữu hạn hoặc vô hạn), trong đó kể từ số hạng thứ hai, mỗi số hạng đều bằng

số hạng đứng ngay trước nó cộng với số không đổi d Số d được gọi là công sai của cấp số cộng.

Nếu ( )u là cấp số cộng với công sai d , ta có công thức truy hồi n

* 1

Bài 2: Cho cấp số cộng có 7 số hạng biết tổng số hạng thứ 3 và số

hạng thứ năm bằng 28, tổng số hạng thứ năm và số hạng cuối

bằng 140 Tìm số hạng đầu và công sai của cấp số cộng đó? Ta có :

3 5 4

2814

14070

Trang 9

1 1 1

Bài 3: Một công ty trả lương cho anh A theo phương thức sau:

Mức lương quý đầu tiên là 4,5 triệu đồng/ quý Kể từ quý tiếp

theo, mỗi quý được tăng thêm 0,3 triệu đồng Hỏi tổng số tiền

lương anh A nhận được sau 3 năm làm việc.

Bài 4: Từ 0 giờ đến 12 giờ trưa, đồng hồ đánh bao nhiêu tiếng

chuông, nếu nó chỉ đánh chuông báo giờ và số tiếng chuông bằng

O O O

a) Hãy viết hệ thức liên hệ giữa các đại lượng đó Cần phải biết ít

nhất mấy đại lượng để có thể tìm được các đại lượng còn lại ?

b) Lập bảng theo mẫu và điền số vào ô thích hợp (Bảng xem sgk

trang 97).

Hs thảo luận và trình bày.

Để xác định các yếu tố còn lại ta cần biết ít nhất ba trong năm yếu tố u d n u S1, , , , .n n

Trang 10

u d

u

u d

Câu 3 : Cho một cấp số cộng có u13;u6 27 Tìm d ?

Lời giải Chọn C.

NHẬN BIẾT

1

THÔNG HIỂU

2

Trang 11

d 

311

d 

103

d 

310

d 

Lời giải Chọn A.

có: u10,1; d  Khẳng định nào sau đây là đúng? 1

A. Số hạng thứ 7 của cấp số cộng này là: 0,6 B. Cấp số cộng này không có hai số 0,5 và 0,6

C. Số hạng thứ 6 của cấp số cộng này là: 0,5 D. Số hạng thứ 4 của cấp số cộng này là: 3,9

Lời giải Chọn B.

có: u10,3;u8  Khẳng định nào sau đây là sai? 8

A. Số hạng thứ 2 của cấp số cộng này là: 1,4 B. Số hạng thứ 3 của cấp số cộng này là: 2,5

C. Số hạng thứ 4 của cấp số cộng này là: 3,6 D. Số hạng thứ 7 của cấp số cộng này là: 7,7

Lời giải Chọn D.

Trang 12

Khi đó

2 1

5

4

2 5 72

22

12 5 17

u u

Câu 10 : Cho dãy số (u n) với : u n  7 2n Khẳng định nào sau đây là sai?

A. 3 số hạng đầu của dãy:u15;u2 3;u3  1 B. Số hạng thứ n + 1:u n1 8 2n

C. Là cấp số cộng có d = – 2 D. Số hạng thứ 4: u  4 1

Lời giải Chọn B.

n

un

Khẳng định nào sau đây là đúng?

A. Dãy số này không phải là cấp số cộng B Số hạng thứ n + 1: 1

12

n

u   n

Trang 13

C. Hiệu : 1

12

u   u

Lời giải Chọn C.

Câu 12 : Cho dãy số  u n

với : u n 2n  Khẳng định nào sau đây là sai? 5

A. Là cấp số cộng có d = – 2 B. Là cấp số cộng có d = 2

C. Số hạng thứ n + 1:u n12n 7 D. Tổng của 4 số hạng đầu tiên là:S 4 40

Lời giải Chọn A.

Phương pháp loại trừ: A hoặc B sai

S 

B. 5

4.5

S 

C. 5

5.4

S 

D. 5

4.5

S 

Lời giải.

Chọn C.

Trang 14

Sử dụng công thức tính tổng n số hạng đầu tiên:

Tính được: 5

54

u 

D. 1

116

u 

103

u 

Lời giải Chọn D.

Trang 15

Câu 18 : Cho dãy số  u n

u1 2;d  2;S 21 2 Khẳng định nào sau đây là đúng?

A. S là tổng của 5 số hạng đầu của cấp số cộng

B. S là tổng của 6 số hạng đầu của cấp số cộng

C. S là tổng của 7 số hạng đầu của cấp số cộng

D. S là tổng của 4 số hạng đầu của cấp số cộng

Lời giải Chọn B.

Trang 16

A.x 3. B.

32

x 

C

34

x 

Lời giải Chọn B.

Ba số :1 2 ;2 x x21; 2 x theo thứ tự lập thành một cấp số cộng khi và chỉ khi

Ba số : 1 3 ; a a25;1 atheo thứ tự lập thành một cấp số cộng khi và chỉ khi

a, b, c theo thứ tự lập thành cấp số cộng khi và chỉ khi:

VẬN DỤNG

3

Trang 17

 2  2 2 2 2 2

b a c b    b a  c b  acabbc

.Suy ra chọn đáp án B

Câu 24 : Cho a b c, , theo thứ tự lập thành cấp số cộng, đẳng thức nào sau đây là đúng?

A. a2c2 2ab2bc2ac B. a2 c2 2ab2bc 2ac

C. a2c2 2ab2bc 2ac D. a2 c2 2ab 2bc2ac

Lời giải Chọn C.

Ta có a b c, , theo thứ tự lập thành cấp số cộng khi và chỉ khi a c 2b

Trang 18

A. S = 24 B. S = –24 C. S = 26 D. S = –25.

Lời giải Chọn A.

Sử dụng kết quả bài 17 Tính được

Sử dụng kết quả bài 17 Tính được

Trang 19

Chọn B

Ta có 5  2 ( 3); 8   5 ( 3); 11   8 ( 3); 14 11 ( 3);   nên d  3

Áp dụng công thức 1

(n 1)2

Trang 20

Câu 35 : Cho dãy số  u nn 2 3 1

u 

Câu 36 : Cho dãy số u n

u n= 1

n+2 Khẳng định nào sau đây sai?

A. Các số hạng của dãy luôn dương B. là một dãy số giảm dần

u2 u1u3 u2 nên dãy số không phải là cấp số cộng

Câu 37 : Cho dãy số u n

Từ khóa » Bài Tập Tự Luận Mô đun 3 Môn Toán Thpt