Đề Cương ôn Tập Học Kì 1 Môn Toán Lớp 11
Có thể bạn quan tâm
- Lớp 1
- Lớp 2
- Lớp 3
- Lớp 4
- Lớp 5
- Lớp 6
- Lớp 7
- Lớp 8
- Lớp 9
- Lớp 10
- Lớp 11
- Lớp 12
- Thi chuyển cấp
Mầm non
- Tranh tô màu
- Trường mầm non
- Tiền tiểu học
- Danh mục Trường Tiểu học
- Dạy con học ở nhà
- Giáo án Mầm non
- Sáng kiến kinh nghiệm
Học tập
- Giáo án - Bài giảng
- Luyện thi
- Văn bản - Biểu mẫu
- Viết thư UPU
- An toàn giao thông
- Dành cho Giáo Viên
- Hỏi đáp học tập
- Cao học - Sau Cao học
- Trung cấp - Học nghề
- Cao đẳng - Đại học
Hỏi bài
- Toán học
- Văn học
- Tiếng Anh
- Vật Lý
- Hóa học
- Sinh học
- Lịch Sử
- Địa Lý
- GDCD
- Tin học
Trắc nghiệm
- Trắc nghiệm IQ
- Trắc nghiệm EQ
- KPOP Quiz
- Đố vui
- Trạng Nguyên Toàn Tài
- Trạng Nguyên Tiếng Việt
- Thi Violympic
- Thi IOE Tiếng Anh
- Kiểm tra trình độ tiếng Anh
- Kiểm tra Ngữ pháp tiếng Anh
Tiếng Anh
- Luyện kỹ năng
- Giáo án điện tử
- Ngữ pháp tiếng Anh
- Màu sắc trong tiếng Anh
- Tiếng Anh khung châu Âu
- Tiếng Anh phổ thông
- Tiếng Anh thương mại
- Luyện thi IELTS
- Luyện thi TOEFL
- Luyện thi TOEIC
Khóa học trực tuyến
- Tiếng Anh cơ bản 1
- Tiếng Anh cơ bản 2
- Tiếng Anh trung cấp
- Tiếng Anh cao cấp
- Toán mầm non
- Toán song ngữ lớp 1
- Toán Nâng cao lớp 1
- Toán Nâng cao lớp 2
- Toán Nâng cao lớp 3
- Toán Nâng cao lớp 4
Nội dung ôn thi học kì I môn Toán lớp 11
Đề cương ôn tập học kì 1 môn Toán lớp 11 vừa được VnDoc.com sưu tập và xin gửi tới bạn đọc để bạn đọc cùng tham khảo và có thêm tài liệu ôn tập. Đề cương gồm có 9 trang gồm kiến thức các phần Đại số và Hình học trong toán 11 học kì 1, phía cuối là một số đề thi tham khảo. Mời bạn đọc cùng tham khảo chi tiết bài viết dưới đây nhé.
ĐỀ CƯƠNG ÔN TẬP TOÁN 11HỌC KÌ 1 – CHUẨN VÀ NÂNG CAO
I. HÀM SỐ LƯỢNG GIÁC – PHƯƠNG TRÌNH LƯỢNG GIÁC
1. Tìm tập xác định của mỗi hàm số sau đây:
\(a.f\left( x \right)=\frac{\sin x+1}{\sin x-1}\) | \(b.f\left( x \right)=\frac{2\tan x+2}{\cos x-1}\) |
\(c.f\left( x \right)=\frac{\cot x}{\sin x+1}\) | \(d/ y=\frac{\sin \left( 2-x \right)}{\cos 2x-\cos x}\) |
\(e. y=\frac{\sin \left( 2-x \right)}{\cos 2x-\cos x}\) | \(f.y=\frac{1}{\sqrt{3}\cot 2x+1}\) |
a. \(f\left( x \right)=\frac{\sin x+1}{\sin x-1}\)
Điều kiện xác định:
\(\sin x-1\ne 0\Rightarrow \sin x\ne 1\Rightarrow x\ne \frac{\pi }{2}+k2\pi ,k\in \mathbb{Z}\)
Vậy tập xác định của hàm số là: \(D=\mathbb{R}\backslash \left\{ \frac{\pi }{2}+k2\pi ,k\in \mathbb{Z} \right\}\)
b. \(f\left( x \right)=\frac{2\tan x+2}{\cos x-1}\)
Điều kiện xác định của hàm số:
\(\cos x-1\ne 0\Rightarrow \cos x\ne 1\Rightarrow x\ne k2\pi ,k\in \mathbb{Z}\)
Vậy tập xác định của hàm số là: \(D=\mathbb{R}\backslash \left\{ k2\pi ,k\in \mathbb{Z} \right\}\)
c. \(f\left( x \right)=\frac{\cot x}{\sin x+1}\)
Điều kiện xác định của hàm số là:
\(\sin x+1\ne 0\Rightarrow \sin x\ne -1\Rightarrow x\ne \frac{-\pi }{2}+k2\pi ,k\in \mathbb{Z}\)
Vậy tập xác định của hàm số là: \(D=\mathbb{R}\backslash \left\{ -\frac{\pi }{2}+k2\pi ,k\in \mathbb{Z} \right\}\)
d. \(y=\tan \left( x+\dfrac{\pi }{3} \right)=\frac{\sin \left( x+\dfrac{\pi }{3} \right)}{\cos \left( x+\dfrac{\pi }{3} \right)}\)
Điều kiện xác định của hàm số:
\(\cos \left( x+\frac{\pi }{3} \right)\ne 0\Rightarrow x+\frac{\pi }{3}\ne \frac{\pi }{2}+k\pi \Rightarrow x\ne \frac{\pi }{6}+k\pi ,k\in \mathbb{Z}\)
Vậy tập xác định của hàm số là: \(D=\mathbb{R}\backslash \left\{ \frac{\pi }{6}+k\pi ,k\in \mathbb{Z} \right\}\)
2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số
\(a.y=3\cos x+2\) | \(b.y=1-5\sin 3x\) |
\(c.y=4\cos \left( 2x+\frac{\pi }{5} \right)+9\) | \(d.f\left( x \right)=\cos x-\sqrt{3}\sin x\) |
\(e.f(x)={{\sin }^{3}}x+{{\cos }^{3}}x\) | \(f.f(x)={{\sin }^{4}}x+{{\cos }^{4}}x\) |
a. \(y=3\cos x+2\)
Ta có:
\(\begin{align} & -1\le \cos x\le 1 \\ & \Rightarrow -3\le 3\cos x\le 3 \\ & \Rightarrow -1\le 3\cos x+2\le 5 \\ & \Rightarrow -1\le y\le 5 \\ \end{align}\)
Giá trị lớn nhất của hàm số là:
\(\max y=5\Leftrightarrow \cos x=1\Rightarrow x=k2\pi ,k\in \mathbb{Z}\)
Giá trị nhỏ nhất của hàm số là:
\(\min y=-1\Leftrightarrow \cos x=-1\Rightarrow x=\pi +k2\pi ,k\in \mathbb{Z}\)
b. \(y=1-5\sin 3x\)
Ta có:
\(\begin{align} & -1\le \sin 3x\le 1 \\ & \Rightarrow 5\ge -5\sin 3x\ge -5 \\ & \Rightarrow 6\ge 1-5\sin 3x\ge -4 \\ & \Rightarrow 6\ge y\ge -4 \\ \end{align}\)
Giá trị lớn nhất của hàm số là:
\(\Rightarrow \max y=6\Leftrightarrow \sin 3x=-1\Rightarrow x=\frac{-\pi }{6}+\frac{k2\pi }{3},k\in \mathbb{Z}\)
Giá trị nhỏ nhất của hàm số là:
\(\Rightarrow \min y=-4\Leftrightarrow \sin 3x=1\Rightarrow x=\frac{\pi }{6}+\frac{k2\pi }{3},k\in \mathbb{Z}\)
c. \(y=4\cos \left( 2x+\frac{\pi }{5} \right)+9\)
Tương tự câu trên ta dễ dàng chỉ ra
\(\begin{align} & \Rightarrow 5\le y\le 13 \\ \end{align}\)
Giá trị lớn nhất của hàm số là:
\(\max y=13\Leftrightarrow \cos \left( 2x+\frac{\pi }{5} \right)=1\Rightarrow x=-\frac{\pi }{10}+k\pi ,k\in \mathbb{Z}\)
Giá trị nhỏ nhất của hàm số là:
\(\min y=5\Leftrightarrow \cos \left( 2x+\frac{\pi }{5} \right)=-1\Rightarrow x=\frac{4\pi }{10}+k\pi ,k\in \mathbb{Z}\)
d.
\(\begin{align} & f\left( x \right)=\cos x-\sqrt{3}\sin x=2\left( \frac{1}{2}.\cos x-\frac{\sqrt{3}}{2}.\sin x \right) \\ & =2.\left( \cos \left( \frac{\pi }{3} \right).\cos x-\sin \left( \frac{\pi }{3} \right).\sin x \right)=2\cos \left( x+\frac{\pi }{3} \right) \\ \end{align}\)
Ta có:
\(\begin{align} & -1\le \cos \left( x+\frac{\pi }{3} \right)\le 1\Rightarrow -2\le 2\cos \left( x+\frac{\pi }{3} \right)\le 2 \\ & \Rightarrow -2\le y\le 2 \\ \end{align}\)
Giá trị lớn nhất của hàm số là:
\(\Rightarrow \max y=2\Leftrightarrow \cos \left( x+\frac{\pi }{3} \right)=1\Rightarrow x=-\frac{\pi }{3}+k2\pi ,k\in \mathbb{Z}\)
Giá trị nhỏ nhất của hàm số là:
\(\Rightarrow \min y=-2\Leftrightarrow \cos \left( x+\frac{\pi }{3} \right)=-1\Rightarrow x=\frac{2\pi }{3}+k2\pi ,k\in \mathbb{Z}\)
f.
\(\begin{align} & f(x)={{\sin }^{4}}x+{{\cos }^{4}}x={{\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)}^{2}}-2{{\sin }^{2}}x.{{\cos }^{2}}x \\ & =1-\frac{1}{2}{{\sin }^{2}}2x=1-\frac{1}{2}\frac{1-\cos 4x}{2}=\frac{3}{4}+\frac{\cos 4x}{4} \\ \end{align}\)
Ta có:
\(\begin{align} & -1\le \cos 4x\le 1 \\ & \Rightarrow \frac{-1}{4}\le \frac{\cos 4x}{4}\le \frac{1}{4} \\ & \Rightarrow \frac{1}{2}\le \frac{3}{4}+\frac{\cos 4x}{4}\le 1 \\ & \Rightarrow \frac{1}{2}\le y\le 1 \\ \end{align}\)
Giá trị lớn nhất của hàm số là:
\(\max y=1\Leftrightarrow \cos 4x=1\Rightarrow x=\frac{k\pi }{2},k\in \mathbb{Z}\)
Giá trị nhỏ nhất của hàm số là:
\(\min y=-1\Leftrightarrow \cos 4x=-1\Rightarrow x=\frac{\pi }{4}+\frac{k\pi }{2},k\in \mathbb{Z}\)
1.3. Giải phương trình lượng giác cơ bản:
\(a.2\sin x+\sqrt{2}=0\) | \(b.\sin \left( x-2 \right)=\frac{2}{3}\) | \(c.\cot \left( x+{{20}^{o}} \right)=\cot {{60}^{o}}\) |
\(d.2\cos 2x+1=0\) | \(e.\cos \left( 2x+{{15}^{o}} \right)=-0,5\) | \(f.\sqrt{3}\operatorname{t}\text{an}3x+1=0\) |
\(g.\sin \left( 2x-\frac{\pi }{5} \right)=\sin \left( \frac{\pi }{5}+x \right)\) | \(h.\cos \left( 2x+1 \right)=\cos \left( 2x-1 \right)\) | \(i.\sin 3x=\cos 2x\) |
Hướng dẫn giải
a. \(2\sin x+\sqrt{2}=0\Rightarrow \sin x=\dfrac{-\sqrt{2}}{2}\Rightarrow \left[ \begin{matrix} x=\dfrac{-\pi }{4}+k2\pi \\ x=\pi +\dfrac{\pi }{4}+k2\pi \\ \end{matrix}\Rightarrow \left[ \begin{matrix} x=\dfrac{-\pi }{4}+k2\pi \\ x=\dfrac{5\pi }{4}+k2\pi \\ \end{matrix} \right. \right.,k\in \mathbb{Z}\)
Vậy phương trình có nghiệm \(x=\frac{-\pi }{4}+k2\pi\) hoặc \(x=\frac{5\pi }{4}+k2\pi ,k\in \mathbb{Z}\)
b.
\(\sin \left( x-2 \right)=\frac{2}{3}\Rightarrow \left[ \begin{matrix} x-2=\arcsin \dfrac{2}{3}+k2\pi \\ x-2=\pi -\arcsin \dfrac{2}{3}+k2\pi \\ \end{matrix} \right.\Leftrightarrow \left[ \begin{matrix} x=\arcsin \dfrac{2}{3}+2+k2\pi \\ x=\pi -\arcsin \dfrac{2}{3}+2+k2\pi \\ \end{matrix} \right.,k\in \mathbb{Z}\)
Vậy phương trình có nghiệm \(x=\pi -\arcsin \frac{2}{3}+2+k2\pi\) hoặc \(x=\arcsin \frac{2}{3}+2+k2\pi ,k\in \mathbb{Z}\)
c. \(\cot \left( x+{{20}^{o}} \right)=\cot {{60}^{o}}\)
Điều kiện: \(\sin \left( x+{{20}^{o}} \right)\ne 0\Rightarrow x+{{20}^{0}}\ne k\pi \Rightarrow x\ne -{{20}^{0}}+k\pi ,k\in \mathbb{Z}\)
Phương trình tương đương:
\(x+{{20}^{0}}={{60}^{0}}+k\pi \Rightarrow x={{40}^{0}}+k\pi ,k\in \mathbb{Z}\)
Vậy phương trình có nghiệm \(x={{40}^{0}}+k\pi ,k\in \mathbb{Z}\)
d. \(2\cos 2x+1=0\Rightarrow \cos 2x=\frac{-1}{2}\Rightarrow x=\pm \frac{2\pi }{6}+k\pi ,k\in \mathbb{Z}\)
Vậy phương trình có nghiệm \(x=\pm \frac{2\pi }{6}+k\pi ,k\in \mathbb{Z}\)
Các câu còn lại học sinh tự giải
1.4. Giải các phương trình lượng giác sau đây:
\(a.{{\cos }^{2}}2x=\frac{1}{4}\) | \(b.4\cos^22x-3=0\) |
\(c.{{\cos }^{2}}3x+{{\sin }^{2}}2x=1\) | \(d.\sin x+\cos x=1\) |
\(e.{{\sin }^{4}}x-{{\cos }^{4}}x=1\) | \(f.2\sin 2x+1=0\) |
Hướng dẫn giải
a.
\(\begin{align} & {{\cos }^{2}}2x=\frac{1}{4}\Leftrightarrow 4{{\cos }^{2}}2x=1\Leftrightarrow 2.\left( \cos 4x+1 \right)=1 \\ & \Leftrightarrow 2.\cos 4x=-1\Leftrightarrow \cos 4x=\frac{-1}{2}\Leftrightarrow x=\pm \frac{2\pi }{12}+\frac{k\pi }{2},k\in \mathbb{Z} \\ \end{align}\)
b.
\(\begin{align} & 4{{\cos }^{2}}2x-3=0\Rightarrow 2.\left( \cos 4x+1 \right)-3=0\Rightarrow 2.\cos 4x-1=0 \\ & \Rightarrow \cos 4x=\frac{1}{2}\Rightarrow x=\pm \frac{\pi }{12}+k2\pi ,k\in \mathbb{Z} \\ \end{align}\)
Vậy phương trình có nghiệm: \(x=\pm \frac{\pi }{12}+k2\pi ,k\in \mathbb{Z}\)
1.5. Tìm các nghiệm của phương trình sau trong khoảng đã cho:
a/ 2sin2x + 1 = 0 với 0 < x < π
b/ cot(x - 5) = √3 với -π < x < π
Hướng dẫn giải
a. \(2\sin 2x+1=0\Leftrightarrow \sin 2x=\frac{-1}{2}\Rightarrow \left[ \begin{matrix} x=\dfrac{-\pi }{3}+k\pi \\ x=\dfrac{5\pi }{6}+k\pi \\ \end{matrix} \right.,k\in \mathbb{Z}\)
Do phương trình có nghiệm nằm trong khoảng \(\left( 0,\pi \right)\) nên ta xét các trường hợp như sau:
Với \(x=\frac{-\pi }{3}+k\pi\) ta có:
\(0 < x< \pi \Leftrightarrow 0<\frac{-\pi }{3}+k\pi < \pi \Leftrightarrow \frac{1}{3}< k< \frac{4}{3},k\in \mathbb{Z}\Rightarrow k=1\Rightarrow x=\frac{2\pi }{3}\)
Với \(x=\frac{5\pi }{6}+k\pi\)
\(0< x<\pi \Leftrightarrow 0<\frac{5\pi }{6}+k\pi < \pi \Leftrightarrow \frac{-5}{6}< k <\frac{1}{6},k\in \mathbb{Z}\Rightarrow k=0\Rightarrow x=\frac{5\pi }{6}\)
Vậy trên khoảng \(\left( 0,\pi \right)\) phương trình có nghiệm \(x=\frac{2\pi }{3},x=\frac{5\pi }{6}\)
1. 6. Giải các phương trình sau:
\(a.{{\cos }^{2}}x-\sqrt{3}\sin x\cos x=0\)
\(b.\sqrt{3}\cos x+\sin 2x=0\)
\(c.8\sin x.\cos x.\cos 2x=\cos 8\left( \frac{\pi }{16}-x \right)\)
\(d.{{\sin }^{4}}\left( x+\frac{\pi }{2} \right)-{{\sin }^{4}}x=\sin 4x\)
1. 7. Giải phương trình:
\(a.\cos 7x.\cos x=\cos 5x.\cos 3x\)
\(b.\cos 4x+\sin 3x.\cos x=\sin x.\cos 3x\)
\(c.1+\cos x+\cos 2x+\cos 3x=0\)
\(d.{{\sin }^{2}}x+{{\sin }^{2}}2x+{{\sin }^{2}}3x+{{\sin }^{2}}4x=2\)
1. 8. Giải phương trình:
1. 9. Giải phương trình:
1. 10. Giải các phương trình:
1. 11. Giải phương trình:
1. 12. Giải phương trình:
1. 13. Giải phương trình:
II. TỔ HỢP – XÁC SUẤT
2. 1. Có bao nhiêu số tự nhiên có hai chữ số mà hai chữ số của nó đều chẵn?
2. 2. Từ các chữ số 0, 1, 2, 3, 4, 5, 6, có thể tạo nên bao nhiêu số tự nhiên có hai chữ số khác nhau?
2. 3. Từ các chữ số 2, 3, 4, 6, 7 có thể lập được bao nhiêu số tự nhiên bé hơn 100?
2. 4. Cho tập hợp X = {0, 1, 2, 3, 4, 5, 6, 7, 8}. Từ các phần tử của tập X có thể lập bao nhiêu số tự nhiên trong các trường hợp sau:
a/ Số đó có 4 chữ số khác nhau từng đôi một.
b/ Số đó là số chẵn và có 4 chữ số khác nhau từng đôi một.
2. 5. Từ các chữ số 0, 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên có ba chữ số khác nhau và chia hết cho 5?
2. 6. Có tối đa bao nhiêu số máy điện thoại có 7 chữ số bắt đầu bằng số 8 sao cho:
a/ Các chữ số đôi một khác nhau.
b/ Các chữ số tùy ý.
2. 7. a/ Có bao nhiêu cách chọn 3 người từ 10 người để thực hiện cùng một công việc?
b/ Có bao nhiêu cách chọn 3 người từ 10 người để thực hiện ba công việc khác nhau?
2. 8. Trong một cuộc thi có 16 đội tham dự, giả sử rằng không có hai đội nào cùng điểm.
a/ Nếu kết quả cuộc thi là chọn ra ba đội có điểm cao nhất thì có bao nhiêu cách chọn?
b/ Nếu kết quả cuộc thi là chọn ra các giải nhất, nhì, ba thì có bao nhiêu sự lựa chọn?
2. 9. Từ các chữ số 2, 3, 4, 5, 6, 7, 8 có thể lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau và lớn hơn 8600?
2. 10. Cho 10 điểm nằm trên một đường tròn.
a/ Có bao nhiêu đoạn thẳng mà hai đầu là hai trong số 10 điểm đã cho?
b/ Có bao nhiêu vectơ khác có gốc và ngọn trùng với hai trong số 10 điểm đã cho?
c/ Có bao nhiêu tam giác mà các đỉnh là ba trong số 10 điểm đã cho?
Mời các bạn tải file đầy đủ về tham khảo.
Trên đây VnDoc.com vừa giới thiệu tới bạn đọc Đề cương ôn tập học kì 1 môn Toán lớp 11, chắc hẳn qua bài viết bạn đọc đã nắm được những ý chính cũng như trau dồi được nội dung kiến thức của bài học rồi đúng không ạ? Bài viết tổng hợp lại toàn bộ nội dung lý thuyết và các bài tập kèm theo trong học kì 1.... Mong rằng qua đây bạn đọc có thêm thật nhiều tài liệu và tổng hợp được kiến thức môn Toán để ôn tập tốt hơn nhé. Để giúp bạn đọc có thêm nhiều tài liệu học tập hơn nữa, VnDoc.com mời bạn đọc cùng tham khảo thêm một số tài liệu học tập các môn được chúng tôi biên soạn và tổng hợp tại các mục sau Ngữ văn 11, Tiếng Anh 11, đề thi học kì 1 lớp 11, đề thi học kì 2 lớp 11...
- Đề cương ôn tập học kì 1 môn Vật lý lớp 11
- Đề cương ôn tập học kì 1 môn Ngữ văn lớp 11
- 20 bộ đề thi học kì 1 môn Toán lớp 11
- Bộ đề thi học kì 1 môn Toán lớp 11 năm học 2016 - 2017
- 20 bộ đề thi học kì 1 môn Toán lớp 1
Tham khảo thêm
Đề kiểm tra học kì 1 môn Toán lớp 11 năm học 2014 - 2015 trường THPT Châu Thành 1, Đồng Tháp
Đề thi học kì 1 môn Toán lớp 11 trường THPT Trần Quang Khải, Hà Nội năm học 2015 - 2016
Đề thi học kì 1 môn Giáo dục Kinh tế và Pháp luật 11 Cánh diều
20 đề thi học kì 1 môn Vật lý lớp 11 có đáp án
Bộ đề thi học kì 1 lớp 11 môn Lịch sử năm học 2023 - 2024 Sách mới
Bộ đề thi học kì 1 lớp 11 môn Hóa học năm học 2023 - 2024 Sách mới
Đề thi học kì 1 môn Toán lớp 11 trường THPT Lê Hồng Phong, Đăk Lăk năm học 2015 - 2016
Bộ đề thi học kì 1 lớp 11 môn Sinh học năm học 2023 - 2024 Sách mới
Bộ đề thi học kì 1 lớp 11 môn Ngữ Văn năm học 2023 - 2024 Sách mới
Bộ đề thi học kì 1 lớp 11 môn Địa lí năm học 2023 - 2024 Sách mới
- Chia sẻ bởi: Kim Ngưu
- Nhóm: Sưu tầm
- Ngày: 09/12/2022
Gợi ý cho bạn
Mẫu đơn xin học thêm
Tổng hợp từ vựng tiếng Anh lớp 9 chương trình mới
Trắc nghiệm tiếng Anh 5 i-Learn Smart Start Unit 1 Online
Được 18-20 điểm khối A1 kỳ thi THPT Quốc gia 2022, nên đăng ký trường nào?
Lớp 11
Toán 11
Đề thi học kì 1 lớp 11
Đề thi học kì 1 lớp 11
Bộ đề thi học kì 1 lớp 11 môn Sinh học năm học 2023 - 2024 Sách mới
Bộ đề thi học kì 1 lớp 11 môn Địa lí năm học 2023 - 2024 Sách mới
Bộ đề thi học kì 1 lớp 11 môn Hóa học năm học 2023 - 2024 Sách mới
Bộ đề thi học kì 1 lớp 11 môn Ngữ Văn năm học 2023 - 2024 Sách mới
20 đề thi học kì 1 môn Vật lý lớp 11 có đáp án
Bộ đề thi học kì 1 lớp 11 môn Lịch sử năm học 2023 - 2024 Sách mới
Từ khóa » File ôn Tập Toán 11
-
Tài Liệu Toán 11
-
Toán 11
-
Tài Liệu Môn Toán Lớp 11 - HOCMAI
-
144 đề Cương ôn Tập Toán 11
-
Đề Cương Ôn Tập Toán 11 HK2 Năm 2022 Tham Khảo
-
Đề Cương Ôn Tập Toán 11 Giữa Học Kỳ 1 - Thư Viện Học Liệu
-
Phần Mềm - ĐỀ CƯƠNG ÔN TẬP TOÁN 11 TỔNG HỢP
-
Đề Cương ôn Thi Học Kì 1 Môn Toán Lớp 11 Năm 2021
-
Đề Cương ôn Tập Học Kỳ 1 Toán 11 (đầy đủ) - MathVn.Com
-
144 đề Cương ôn Tập Toán 11 - Tìm đáp án, Giải Bài Tập, để Học Tốt
-
Đề Cương ôn Tập HK1 Toán Lớp 11 Cơ Bản Và Nâng Cao
-
Đề Cương ôn Tập Học Kì 2 Toán Lớp 11
-
Đề Cương ôn Tập Học Kỳ I Môn Toán Lớp 11
-
Đề Cương ôn Tập Toán 11 HK1 2020 - Sách Toán - Học Toán