Derivative Of Inverse Hyperbolic Tangent - EMathZone
In this tutorial we shall discuss the derivative of the inverse hyperbolic tangent function with an example.
Let the function be of the form \[y = f\left( x \right) = {\tanh ^{ – 1}}x\]
By the definition of the inverse trigonometric function, $$y = {\tanh ^{ – 1}}x$$ can be written as \[\tanh y = x\]
Differentiating both sides with respect to the variable $$x$$, we have \[\begin{gathered} \frac{d}{{dx}}\tanh y = \frac{d}{{dx}}\left( x \right) \\ \Rightarrow {\operatorname{sech} ^2}y\frac{{dy}}{{dx}} = 1 \\ \Rightarrow \frac{{dy}}{{dx}} = \frac{1}{{{{\operatorname{sech} }^2}y}}\,\,\,\,{\text{ – – – }}\left( {\text{i}} \right) \\ \end{gathered} \]
From the fundamental rules of inverse hyperbolic identities, this can be written as $${\operatorname{sech} ^2}y = 1 – {\tanh ^2}y$$. Putting this value in the above relation (i) and simplifying, we have \[\frac{{dy}}{{dx}} = \frac{1}{{1 – {{\tanh }^2}y}}\]
From the above we have $$\tanh y = x$$, thus \[\begin{gathered} \frac{{dy}}{{dx}} = \frac{1}{{1 – {x^2}}} \\ \Rightarrow \frac{d}{{dx}}\left( {{{\tanh }^{ – 1}}x} \right) = \frac{1}{{1 – {x^2}}} \\ \end{gathered} \]
Example: Find the derivative of \[y = f\left( x \right) = {\tanh ^{ – 1}}{x^2}\]
We have the given function as \[y = {\tanh ^{ – 1}}{x^2}\]
Differentiating with respect to variable $$x$$, we get \[\frac{{dy}}{{dx}} = \frac{d}{{dx}}{\tanh ^{ – 1}}{x^2}\]
Using the rule, $$\frac{d}{{dx}}\left( {{{\tanh }^{ – 1}}x} \right) = \frac{1}{{1 – {x^2}}}$$, we get \[\begin{gathered} \frac{{dy}}{{dx}} = \frac{1}{{1 – {{\left( {{x^2}} \right)}^2}}}\frac{d}{{dx}}{x^2} \\ \Rightarrow \frac{{dy}}{{dx}} = \frac{1}{{1 – {x^4}}}2x \\ \Rightarrow \frac{{dy}}{{dx}} = \frac{{2x}}{{1 – {x^4}}} \\ \end{gathered} \]
Từ khóa » D/dx Tanh^-1 X
-
Q15, Derivative Of Tanh^-1(x) - YouTube
-
Derivative Rule Of Inverse Hyperbolic Tangent Function - Math Doubts
-
6.9 Calculus Of The Hyperbolic Functions - OpenStax
-
[PDF] Derivation Of The Inverse Hyperbolic Trig Functions
-
How Do You Find The Derivative Of Y=tanh−1(1x)? - Socratic
-
[PDF] Tanh-1(x)].
-
D/dx [tanh^-1 (coshx)] | Wyzant Ask An Expert
-
Calculus - Show That ${d\over Dx}\tanh^{-1}x = {1 \over 1-x^2}
-
Ddx ( Tan^-1 ( Sinh X ) ) = | Maths Questions - Toppr
-
What Is The Derivative Of Tanh(x)? - Quora
-
Solved Find The Derivatives Of Cosh^-1 X And Tanh - Chegg
-
Hyperbolic Functions - LTCC Online
-
Derivative Of Hyperbolic Functions - Formula, Proof, Examples
-
[PDF] 쌍곡선함수 (hyperbolic Function)
-
Explain Inverse Hyperbolic Functions Formula - GeeksforGeeks
-
[PDF] 3.6 Hyperbolic Functions