Điện Trở Suất Và điện Dẫn Suất – Wikipedia Tiếng Việt

Mức độ cản trở hay cho dòng điện đi qua của một vật liệuBản mẫu:SHORTDESC:Mức độ cản trở hay cho dòng điện đi qua của một vật liệu Bài này viết về khả năng dẫn điện nói chung. Đối với các loại dẫn điện khác, xem Độ dẫn điện. Đối với ứng dụng cụ thể trong mạch điện, xem Điện trở và điện dẫn.
Điện trở suất
Ký hiệu thường gặpρ
Đơn vị SIohm mét (Ω⋅m)
Trong hệ SIkg⋅m³⋅s−3⋅A−2
Liên hệ với các đại lượng khác ρ = R A ℓ {\displaystyle \rho =R{\frac {A}{\ell }}}
Thứ nguyên M L 3 T − 3 I − 2 {\displaystyle {\mathsf {M}}{\mathsf {L}}^{3}{\mathsf {T}}^{-3}{\mathsf {I}}^{-2}}
Điện dẫn suất
Ký hiệu thường gặpσ, κ, γ
Đơn vị SIsiemens trên mét (S/m)
Trong hệ SIkg−1⋅m−3⋅s3⋅A2
Liên hệ với các đại lượng khác σ = 1 ρ {\displaystyle \sigma ={\frac {1}{\rho }}}
Thứ nguyên M − 1 L − 3 T 3 I 2 {\displaystyle {\mathsf {M}}^{-1}{\mathsf {L}}^{-3}{\mathsf {T}}^{3}{\mathsf {I}}^{2}}

Điện trở suất (tiếng Anh: electrical resistivity) là một tính chất cơ bản của một vật liệu biểu thị khả năng cản trở dòng điện. Nghịch đảo của nó, điện dẫn suất, cho biết khả năng dẫn điện của một vật liệu. Điện trở suất thấp cho thấy vật liệu có khả năng dẫn điện tốt hơn. Điện trở suất thường được ký hiệu bằng chữ cái Hy Lạp ρ (rho). Đơn vị SI của điện trở suất là ohm-mét (Ω⋅m).[1][2][3] Ví dụ, nếu một dây dẫn dài 1 m có điện trở giữa hai đầu dây là 1 Ω thì điện trở suất của vật liệu làm dây dẫn là 1 Ω⋅m.

Điện dẫn suất hay độ dẫn điện riêng (tiếng Anh: electrical conductivity) là nghịch đảo của điện trở suất. Nó biểu diễn khả năng dẫn điện của một vật liệu. Điện dẫn suất thường được ký hiệu bằng chữ cái Hy Lạp σ (sigma), nhưng đôi khi κ (kappa) (đặc biệt trong kỹ thuật điện) và γ (gamma) cũng được sử dụng. Đơn vị SI của điện dẫn suất là siemens trên mét (S/m).

Định nghĩa

[sửa | sửa mã nguồn]

Trường hợp lý tưởng

[sửa | sửa mã nguồn]
Một miếng vật liệu có tiếp điểm điện ở hai đầu.

Trong trường hợp lý tưởng, thành phần vật lý và tiết diện của vật liệu được xem xét đồng đều trên toàn bộ vật mẫu, còn điện trường và mật độ dòng điện song song và không đổi. Nhiều điện trở và chất dẫn điện thực tế có tiết diện đồng đều, dòng điện không đổi, và được làm bằng một vật liệu duy nhất, nên mô hình này cũng tương đối chính xác. Trong trường hợp này, điện trở suất ρ có thể được tính bằng:

ρ = R A ℓ , {\displaystyle \rho =R{\frac {A}{\ell }},\,\!}

trong đó

R là điện trở của một mẫu vật liệu đồng đều là chiều dài mẫu vật liệu A là diện tích tiết diện của mẫu vật liệu

Cả điện trởđiện trở suất đều biểu diễn khả năng cản trở dòng điện của một chất, nhưng không như điện trở, điện trở suất là một tính chất bên trong. Điều này nghĩa là mọi dây dẫn bằng đồng nguyên chất (có cấu trúc tinh thể không bị biến dạng, v.v.), bất kể hình dạng và kích thước, đều có cùng điện trở suất, nhưng một dây đồng dài, mảnh có điện trở lớn hơn nhiều so với một dây đồng ngắn, dày. Mỗi vật liệu đều có điện trở suất của riêng nó. Ví dụ, cao su có điện trở suất cao hơn đồng rất nhiều.

Trong một tương quan thủy lực, dòng điện chạy qua vật liệu có điện trở suất cao giống như nước chảy qua một ống dẫn chứa cát — trong khi dòng điện chạy qua vật liệu có điện trở suất thấp giống như nước chảy qua một ống rỗng. Nếu các ống đều có cùng hình dạng và chiều kích, một ống dẫn nhiều cát sẽ cản trở dòng chảy nhiều hơn. Tuy nhiên, sự cản trở đó không hoàn toàn phụ thuộc vào việc ống có cát hay không, mà còn phụ thuộc và chiều dài và chiều rộng của ống: ống ngắn hay rộng cản trở kém hơn ống dài hoặc mảnh.

Phương trình trên có thể được biến đổi, cho ta định luật Pouillet (đặt tên theo Claude Pouillet):

R = ρ ℓ A . {\displaystyle R=\rho {\frac {\ell }{A}}.\,\!}

Điện trở của một vật liệu tỷ lệ thuận với chiều dài nhưng tỉ lệ nghịch với diện tích tiết diện. Do đó đơn vị của điện trở suất có thể được biểu diễn bằng "ohm mét" (Ω⋅m) — tức ohm chia cho mét (cho chiều dài) rồi nhân cho mét vuông (cho diện tích tiết diện).

Điện dẫn suất, σ, là nghịch đảo của điện trở suất:

σ = 1 ρ . {\displaystyle \sigma ={\frac {1}{\rho }}.\,\!}

Điện dẫn suất có đơn vị SI là "siemens trên mét" (S/m).

Đại lượng vô hướng tổng quát

[sửa | sửa mã nguồn]

Trong những trường hợp kém lý tưởng hơn, ví dụ như hình dạng phức tạp, hoặc dòng điện và điện trường biến thiên ở những nơi khác nhau, cần sử dụng một biểu thức tổng quát hơn, trong đó điện trở suất tại một điểm được định nghĩa là tỉ số giữa điện trường và mật độ dòng điện tại điểm đó:

ρ = E J , {\displaystyle \rho ={\frac {E}{J}},\,\!}

trong đó

ρ là điện trở suất của vật liệu E là độ lớn của điện trường, J là độ lớn của mật độ dòng điện,

trong đó EJ ở bên trong vật dẫn.

Tương tự, điện dẫn suất là nghịch đảo của điện trở suất, tức

σ = 1 ρ = J E . {\displaystyle \sigma ={\frac {1}{\rho }}={\frac {J}{E}}.\,\!}

Ví dụ, cao su là vật liệu có ρ lớn và σ nhỏ — điện trường dù rất lớn cũng khó tạo dòng điện bên trong nó. Ngược lại, đồng có ρ nhỏ và σ lớn — một điện trường nhỏ cũng có thể tạo ra dòng điện lớn chạy qua nó.

Trong trường hợp điện trường và mật độ dòng điện không đổi, từ công thức tổng quát ta có thể suy ra công thức lý tưởng ở trên.

Nếu điện trường không đổi, nó bằng hiệu điện thế trên toàn bộ vật dẫn V chia cho chiều dài vật dẫn :

E = V ℓ . {\displaystyle E={\frac {V}{\ell }}\,.}

Nếu mật độ dòng điện không đổi, nó bằng cường độ dòng điện chia cho diện tích tiết diện:

J = I A . {\displaystyle J={\frac {I}{A}}\,.}

Thế các biểu thức cho EJ vào công thức tổng quát, ta được:

ρ = V A I ℓ . {\displaystyle \rho ={\frac {VA}{I\ell }}\,.}

Theo định luật Ohm thì V/I = R nên ta có:

ρ = R A ℓ . {\displaystyle \rho =R{\frac {A}{\ell }}\,.}

Tenxơ điện trở suất

[sửa | sửa mã nguồn]

Khi điện trở suất của vật liệu có thành phần chỉ hướng, phải sử dụng định nghĩa tổng quát nhất, bắt đầu từ dạng vectơ-tenxơ của định luật Ohm, liên hệ giữa điện trường và cường độ dòng điện trong vật dẫn. Tuy là phương trình tổng quát, nhưng độ phức tạp khiến nó chỉ được sử dụng trong những trường hợp dị hướng, khi mà không thể dùng những định nghĩa đơn giản hơn.

Ở đây, dị hướng nghĩa là vật liệu có tính chất khác nhau theo những hướng khác nhau. Ví dụ, một tinh thể than chì gồm các lớp graphit xếp chồng lên nhau, và dòng điện chạy qua một lớp graphit rất dễ dàng, nhưng chạy từ lớp này sang lớp khác thì khó hơn nhiều.[4] Trong những trường hợp đó, dòng điện không hoàn toàn chạy cùng hướng với điện trường, nên phương trình được tổng quát thành dạng tenxơ ba chiều:[5][6]

J = σ E ⇔ E = ρ J {\displaystyle \mathbf {J} ={\boldsymbol {\sigma }}\mathbf {E} \,\,\Leftrightarrow \,\,\mathbf {E} ={\boldsymbol {\rho }}\mathbf {J} \,\!}

trong đó điện dẫn suất σ và điện trở suất σ là các tenxơ bậc 2, còn điện trường E và mật độ dòng điện J là các vectơ. Những tenxơ này có thể biểu diễn bằng ma trận 3×3, các vectơ bằng ma trận 3×1, và phép nhân ma trận cho vế phải của phương trình. Dạng ma trận của biểu thức trên là:

[ E x E y E z ] = [ ρ x x ρ x y ρ x z ρ y x ρ y y ρ y z ρ z x ρ z y ρ z z ] [ J x J y J z ] {\displaystyle {\begin{bmatrix}E_{x}\\E_{y}\\E_{z}\end{bmatrix}}={\begin{bmatrix}\rho _{xx}&\rho _{xy}&\rho _{xz}\\\rho _{yx}&\rho _{yy}&\rho _{yz}\\\rho _{zx}&\rho _{zy}&\rho _{zz}\end{bmatrix}}{\begin{bmatrix}J_{x}\\J_{y}\\J_{z}\end{bmatrix}}}

trong đó

E là vectơ điện trường, với các thành phần (Ex, Ey, Ez), σ là tenxơ điện trở suất, một ma trận 3×3, J là vectơ mật độ dòng điện, với các thành phần (Jx, Jy, Jz).

Sử dụng ký hiệu Einstein, điện trở suất có thể viết gọn lại thành:

E i = ρ i j J j {\displaystyle \mathbf {E} _{i}={\boldsymbol {\rho }}_{ij}\mathbf {J} _{j}}

Biểu thức của mỗi thành phần điện trường là:

E x = ρ x x J x + ρ x y J y + ρ x z J z . {\displaystyle E_{x}=\rho _{xx}J_{x}+\rho _{xy}J_{y}+\rho _{xz}J_{z}.} E y = ρ y x J x + ρ y y J y + ρ y z J z . {\displaystyle E_{y}=\rho _{yx}J_{x}+\rho _{yy}J_{y}+\rho _{yz}J_{z}.} E z = ρ z x J x + ρ z y J y + ρ z z J z . {\displaystyle E_{z}=\rho _{zx}J_{x}+\rho _{zy}J_{y}+\rho _{zz}J_{z}.}

Do hệ tọa độ có thể chọn tùy ý, quy ước thông dụng là chọn trục x song song với chiều dòng điện để Jy = Jz = 0. Khi ấy:

ρ x x = E x J x , ρ y x = E y J x ,  and  ρ z x = E z J x . {\displaystyle \rho _{xx}={\frac {E_{x}}{J_{x}}},\quad \rho _{yx}={\frac {E_{y}}{J_{x}}},{\text{ and }}\rho _{zx}={\frac {E_{z}}{J_{x}}}.}

Điện dẫn suất cũng được định nghĩa tương tự:[7]

[ J x J y J z ] = [ σ x x σ x y σ x z σ y x σ y y σ y z σ z x σ z y σ z z ] [ E x E y E z ] {\displaystyle {\begin{bmatrix}J_{x}\\J_{y}\\J_{z}\end{bmatrix}}={\begin{bmatrix}\sigma _{xx}&\sigma _{xy}&\sigma _{xz}\\\sigma _{yx}&\sigma _{yy}&\sigma _{yz}\\\sigma _{zx}&\sigma _{zy}&\sigma _{zz}\end{bmatrix}}{\begin{bmatrix}E_{x}\\E_{y}\\E_{z}\end{bmatrix}}}

hoặc bằng ký hiệu Einstein:

J i = σ i j E j {\displaystyle \mathbf {J} _{i}={\boldsymbol {\sigma }}_{ij}\mathbf {E} _{j}}

Cả hai đều cho ta:

J x = σ x x E x + σ x y E y + σ x z E z {\displaystyle J_{x}=\sigma _{xx}E_{x}+\sigma _{xy}E_{y}+\sigma _{xz}E_{z}} J y = σ y x E x + σ y y E y + σ y z E z {\displaystyle J_{y}=\sigma _{yx}E_{x}+\sigma _{yy}E_{y}+\sigma _{yz}E_{z}} J z = σ z x E x + σ z y E y + σ z z E z {\displaystyle J_{z}=\sigma _{zx}E_{x}+\sigma _{zy}E_{y}+\sigma _{zz}E_{z}}

Có thể thấy ρσ là các ma trận nghịch đảo của nhau. Tuy nhiên, trong trường hợp tổng quát, mỗi thành phần ma trận không nhất thiết là nghịch đảo của nhau; ví dụ như σxx không nhất thiết bằng 1/ρxx. Một ví dụ là hiệu ứng Hall, trong đó ρxy khác không. Trong hiệu ứng Hall, do bất biến quay quanh trục z, ρyy = ρxxρyx = −ρxy, nên quan hệ giữa điện trở suất và điện dẫn suất tinh giản thành:[8]

σ x x = ρ x x ρ x x 2 + ρ x y 2 , σ x y = − ρ x y ρ x x 2 + ρ x y 2 {\displaystyle \sigma _{xx}={\frac {\rho _{xx}}{\rho _{xx}^{2}+\rho _{xy}^{2}}},\quad \sigma _{xy}={\frac {-\rho _{xy}}{\rho _{xx}^{2}+\rho _{xy}^{2}}}}

Nếu điện trường song song với dòng điện, ρxyρxz bằng không. Nếu chúng bằng không, chỉ cần ρxx để biểu diễn điện trở suất. Khi ấy ta có thể viết ρ, tương đương với những công thức đơn giản hơn.

Điện dẫn suất và hạt mang điện

[sửa | sửa mã nguồn]

Quan hệ giữa mật độ dòng điện và vận tốc dòng điện

[sửa | sửa mã nguồn]

Dòng điện là dòng dịch chuyển có hướng của các điện tích. Những điện tích này được gọi là hạt mang điện. Trong kim loại và chất bán dẫn, hạt mang điện là các electron; trong chất điện li và khí ion hóa, hạt mang điện là các ion âm và dương. Nhìn chung, mật độ dòng điện của một hạt mang điện được tính bởi công thức:[9]

j → = q n υ → a {\displaystyle {\vec {j}}=qn{\vec {\upsilon }}_{a}} ,

trong đó n là mật độ hạt mang điện (số hạt mang điện trong một đơn vị thể tích), q là điện tích của một hạt, và υ → a {\displaystyle {\vec {\upsilon }}_{a}} là tốc độ trung bình của nó. Trong trường hợp dòng điện có nhiều hạt mang điện:

j → = ∑ j j i {\displaystyle {\vec {j}}=\sum _{j}j_{i}} .

trong đó ji là mật độ dòng điện của hạt thứ i.

Điện trở suất và điện dẫn suất của một số vật liệu

[sửa | sửa mã nguồn] Bài chi tiết: Điện trở suất của các nguyên tố (trang dữ liệu)
  • Một chất dẫn điện như kim loại có điện trở suất thấp và điện dẫn suất cao.
  • Một chất cách điện như thủy tinh có điện trở suất cao và điện dẫn suất thấp.
  • Điện dẫn suất của một chất bán dẫn nhìn chung ở mức trung bình, nhưng tùy thuộc vào điều kiện môi trường, như là tiếp xúc với điện trường hay ánh sáng ở tần số nhất định và, quan trọng hơn, vào nhiệt độ và thành phần của chất bán dẫn.

Việc pha tạp làm thay đổi đáng kể khả năng dẫn điện của chất bán dẫn. Nhìn chung, pha tạp càng nhiều thì dẫn điện càng tốt. Khả năng dẫn điện của một dung dịch nước phụ thuộc rất lớn vào nồng độ muối hòa tan cũng như những chất hóa học khác làm điện li dung dịch. Khả năng dẫn điện của một mẫu nước được dùng để biểu thị mức độ tinh khiết, không lẫn muối hay ion của nó; nước càng tinh khiết, điện dẫn suất càng thấp, khả năng dẫn điện càng kém.

Bảng sau tóm tắt ước tính của các loại vật liệu chính:

Vật liệu Điện trở suất, ρ (Ω·m)
Chất siêu dẫn 0
Kim loại 10−8
Chất bán dẫn Thay đổi
Chất điện li Thay đổi
Chất cách điện 1016
Chất siêu cách điện

Bảng sau liệt kê điện trở suất ρ, điện dẫn suất σ và hệ số nhiệt độ của một số chất tại 20 °C (68 °F, 293 K)

Vật liệu Điện trở suất, ρ, tại 20 °C (Ω·m) Điện dẫn suất, σ, tại 20 °C (S/m) Hệ số nhiệt độ[a] (K−1) Nguồn
Bạc[b] 1,59×10−8 6,30×107 0.00380 [10][11]
Đồng[c] 1,68×10−8 5,96×107 0.00404 [12][13]
Đồng ủ[d] 1,72×10−8 5,80×107 0.00393 [14]
Vàng[e] 2,44×10−8 4,11×107 0.00340 [10]
Nhôm[f] 2,65×10−8 3,77×107 0.00390 [10]
Calci 3,36×10−8 2,98×107 0.00410
Wolfram 5,60×10−8 1,79×107 0.00450 [10]
Kẽm 5,90×10−8 1,69×107 0.00370 [15]
Cobalt 6,24×10−8 1,60×107 0.007 [16]
Nickel 6,99×10−8 1,43×107 0.006
Rutheni 7,10×10−8 1,41×107
Lithi 9,28×10−8 1,08×107 0.006
Sắt 9,70×10−8 107 0.005 [10]
Platin 1,06×10−7 9,43×106 0.00392 [10]
Thiếc 1,09×10−7 9,17×106 0.00450
Galli 1,40×10−7 7,10×106 0.004
Niobi 1,40×10−7 7,00×106 [17]
Thép cacbon (1010) 1,43×10−7 6,99×106 [18]
Chì 2,20×10−7 4,55×106 0.0039 [10]
Galinstan 2,89×10−7 3,46×106 [19]
Titan 4,20×10−7 2,38×106 0.0038
Thép silic 4,60×10−7 2,17×106 [20]
Manganin 4,82×10−7 2,07×106 0.000002 [21]
Constantan 4,90×10−7 2,04×106 0.000008 [22]
Thép không gỉ[g] 6,90×10−7 1,45×106 0.00094 [23]
Thủy ngân 9,80×10−7 1,02×106 0.00090 [21]
Mangan 1,44×10−6 6,94×105
Nichrome[h] 1,10×10−6 6,70×105 00004 [10]
Cacbon vô định hình 5×10−4 to 8×10−4 1,25×103 to 2,00×103 −0.0005 [10][24]
Cacbon (graphit)song song vớimặt phẳng cơ sở[i] 25×10−6 to 50×10−6 2×105 to 3×105 [4]
Cacbon (graphit)vuông góc vớimặt phẳng cơ sở 3×10−3 33×102 [4]
GaAs 10−3 to 108 10−8 to 103 [25]
Germani[j] 46×10−1 2,17 −0,048 [10][11]
Nước biển[k] 21×10−1 48 [26]
Nước hồ bơi[l] 33×10−1 to 40×10−1 025 to 030 [27]
Nước uống[m] 2×101 to 2×103 5×10−4 to 5×10−2
Silicon[j] 23×103 435×10−4 −0075 [10][28]
Gỗ (ẩm) 103 to 104 10−4 to 10−3 [29]
Nước khử ion 18×105 42×10−5 [30]
Thủy tinh 1011 to 1015 10−15 to 10−11 [10][11]
Cacbon (kim cương) 1012 ~10−13 [31]
Cao su cứng 1013 10−14 [10]
Không khí 109 to 1015 ~10−15 to 10−9 [32][33]
Gỗ (khô) 1014 to 1016 10−16 to 10−14 [29]
Lưu huỳnh 1015 10−16 [10]
Thạch anh nóng chảy 75×1017 13×10−18 [10]
PET 1021 10−21
Teflon 1023 to 1025 10−25 to 10−23

Hệ số nhiệt độ thay đổi theo nhiệt độ và độ tinh khiết của vật liệu. Giá trị ở nhiệt độ 20 °C chỉ là xấp xỉ khi dùng ở nhiệt độ khác. Ví dụ, đối với đồng, hệ số này giảm đi khi nhiệt độ tăng lên, và ở 0 °C hệ số là 0.00427.[34]

Khả năng dẫn điện tốt của bạc và những kim loại khác là đặc trưng điển hình của kim loại. George Gamow giải thích một cách đơn giản trong quyển sách khoa học thường thức của ông, One, Two, Three...Infinity (1947):

Kim loại khác với tất cả những chất khác ở chỗ lớp ngoài cùng nguyên tử của chúng được kết nối tương đối lỏng lẻo, và thường cho phép một electron đi tự do. Do đó bên trong kim loại là một biển những electron rời rạc di chuyển không mục đích như một đám người tản cư. Khi áp dụng lực điện lên hai đầu một dây kim loại, những electron tự do này nhanh chóng đi theo hướng của lực điện, tạo thành cái mà chúng ta gọi là dòng điện.

Sử dụng thuật ngữ, mô hình electron tự do cho ta một mô tả cơ bản về dòng chảy electron trong kim loại.

Gỗ được coi là chất cách điện tốt, nhưng điện trở suất của nó phụ thuộc vào độ ẩm, với gỗ ướt dẫn điện tốt hơn gỗ khô ít nhất 1010 lần.[29] Nhìn chung, với hiệu điện thế đủ lớn – như tia sét hay đường dây dẫn điện cao thế – có thể phá vỡ khả năng cách điện và dẫn đến giật điện ngay cả với gỗ khô.

Xem thêm

[sửa | sửa mã nguồn]
  • Cơ chế dịch chuyển điện tích
  • Hóa điện trở
  • Độ điện thẩm
  • Kháng tiếp xúc
  • Điện trở suất của các nguyên tố (trang dữ liệu)
  • Thăm dò điện chiếu trường
  • Điện trở mặt
  • Đơn vị điện từ SI
  • Hiệu ứng bề mặt
  • Điện trở suất Spitzer

Ghi chú

[sửa | sửa mã nguồn]
  1. ^ Ví dụ, tại 30 °C (303 K), điện trở suất của bạc bằng điện trở suất ở 20 °C cộng cho chênh lệch Δρ = αΔT ρo, trong đó ρo là điện trở suất tại 20 °C, và α là hệ số nhiệt độ. Kết quả là 165×10−8.
  2. ^ Với hầu hết các ứng dụng thực tế. độ dẫn điện của bạc kim loại không hơn đồng kim loại quá nhiều – sự chênh lệch giữa hai chất có thể được bù đắp bằng cách làm dây đồng dày hơn 3%. Tuy nhiên bạc được dùng trong các tiếp điểm điện để hở bởi bạc ăn mòn vẫn dẫn điện tương đối tốt, nhưng đồng bị ăn mòn là chất cách điện, giống nhiều kim loại ăn mòn khác.
  3. ^ Đồng được sử dụng rộng rãi trong các thiết bị điện, dây dẫn trong nhà, và dây cáp viễn thông.
  4. ^ Còn gọi là 100% IACS hay International Annealed Copper Standard. Điện dẫn suất của các chất không từ tính được kiểm tra bằng phương pháp dòng điện Foucalt. Thường dùng để xác minh hợp kim của nhôm.
  5. ^ Mặc dù dẫn điện kém hơn đồng, vàng thường được dùng làm tiếp điểm điện do ít bị ăn mòn.
  6. ^ Thường dùng cho đường dây điện trên không với (ACSR) thép cường lực.
  7. ^ Thép không gỉ austenit 18% chrome và 8% nickel
  8. ^ Hợp kim nickel-sắt-chrome thường dùng trong bộ phận nung.
  9. ^ Graphit có tính dị hướng cao.
  10. ^ a b Điện trở suất của chất bán dẫn phụ thuộc rất lớn vào sự tồn tại của tạp chất trong nó.
  11. ^ Nồng độ muối trung bình khoảng 35 g/kg tại 20 °C.
  12. ^ pH khoảng 8,4 và điện dẫn suất trong khoảng 2,5–3 mS/cm.
  13. ^ Khoảng giá trị này là thông thường và không biểu thị chất lượng nước

Tham khảo

[sửa | sửa mã nguồn]
  1. ^ Lowrie, William (2007). Fundamentals of Geophysics. Cambridge University Press. tr. 254–55. ISBN 978-05-2185-902-8. Truy cập ngày 24 tháng 3 năm 2019.
  2. ^ Kumar, Narinder (2003). Comprehensive Physics for Class XII. New Delhi: Laxmi Publications. tr. 280–84. ISBN 978-81-7008-592-8. Truy cập ngày 24 tháng 3 năm 2019.
  3. ^ Bogatin, Eric (2004). Signal Integrity: Simplified. Prentice Hall Professional. tr. 114. ISBN 978-0-13-066946-9. Truy cập ngày 24 tháng 3 năm 2019.
  4. ^ a b c Hugh O. Pierson, Handbook of carbon, graphite, diamond, and fullerenes: properties, processing, and applications, p. 61, William Andrew, 1993 ISBN 0-8155-1339-9.
  5. ^ Tyldesley, J.R. (1975). An Introduction to Tensor Analysis for Engineers and Applied Scientists. Longman. ISBN 978-0-582-44354-9. Truy cập ngày 28 tháng 6 năm 2021.
  6. ^ Woan, G.; Woan, P.G. (2000). The Cambridge Handbook of Physics Formulas. Cambridge University Press. tr. 147. ISBN 978-0-521-57507-2. Truy cập ngày 28 tháng 6 năm 2021.
  7. ^ Josef Pek, Tomas Verner (3 tháng 4 năm 2007). “Finite‐difference modelling of magnetotelluric fields in two‐dimensional anisotropic media”. Geophysical Journal International. 128 (3): 505–521. doi:10.1111/j.1365-246X.1997.tb05314.x.
  8. ^ David Tong (tháng 1 năm 2016). “The Quantum Hall Effect: TIFR Infosys Lectures” (PDF). Truy cập ngày 14 tháng 9 năm 2018.
  9. ^ Kasap, Safa; Koughia, Cyril; Ruda, Harry E. (2017). “Electrical Conduction in Metals and Semiconductors” (PDF). Springer Handbook of Electronic and Photonic Materials. Safa Kasap, Cyril Koughia, Harry E. Ruda. tr. 1. doi:10.1007/978-3-319-48933-9_2. ISBN 978-3-319-48931-5.
  10. ^ a b c d e f g h i j k l m n o Raymond A. Serway (1998). Principles of Physics (ấn bản thứ 2). Fort Worth, Texas; London: Saunders College Pub. tr. 602. ISBN 978-0-03-020457-9.
  11. ^ a b c David Griffiths (1999) [1981]. “7 Electrodynamics”. Trong Alison Reeves (biên tập). Introduction to Electrodynamics (ấn bản thứ 3). Upper Saddle River, New Jersey: Prentice Hall. tr. 286. ISBN 978-0-13-805326-0. OCLC 40251748.
  12. ^ Matula, R.A. (1979). “Electrical resistivity of copper, gold, palladium, and silver”. Journal of Physical and Chemical Reference Data. 8 (4): 1147. Bibcode:1979JPCRD...8.1147M. doi:10.1063/1.555614. S2CID 95005999.
  13. ^ Douglas Giancoli (2009) [1984]. “25 Electric Currents and Resistance”. Trong Jocelyn Phillips (biên tập). Physics for Scientists and Engineers with Modern Physics (ấn bản thứ 4). Upper Saddle River, New Jersey: Prentice Hall. tr. 658. ISBN 978-0-13-149508-1.
  14. ^ “Copper wire tables”. United States National Bureau of Standards. Truy cập ngày 3 tháng 2 năm 2014 – qua Internet Archive - archive.org (archived 2001-03-10).
  15. ^ Physical constants Lưu trữ 2011-11-23 tại Wayback Machine. (PDF format; see page 2, table in the right lower corner). Truy cập 2011-12-17.
  16. ^ https://www.electronics-notes.com/articles/basic_concepts/resistance/resistance-resistivity-temperature-coefficient.php
  17. ^ Material properties of niobium.
  18. ^ AISI 1010 Steel, cold drawn. Matweb
  19. ^ Karcher, Ch.; Kocourek, V. (tháng 12 năm 2007). “Free-surface instabilithies during electromagnetic shaping of liquid metals”. PAMM. 7 (1): 4140009–4140010. doi:10.1002/pamm.200700645. ISSN 1617-7061.
  20. ^ “JFE steel” (PDF). Truy cập ngày 20 tháng 10 năm 2012.
  21. ^ a b Douglas C. Giancoli (1995). Physics: Principles with Applications (ấn bản thứ 4). London: Prentice Hall. ISBN 978-0-13-102153-2.(see also Table of Resistivity. hyperphysics.phy-astr.gsu.edu)
  22. ^ John O'Malley (1992) Schaum's outline of theory and problems of basic circuit analysis, p. 19, McGraw-Hill Professional, ISBN 0-07-047824-4
  23. ^ Glenn Elert (ed.), "Resistivity of steel", The Physics Factbook, retrieved and archived ngày 16 tháng 6 năm 2011.
  24. ^ Y. Pauleau, Péter B. Barna, P. B. Barna (1997) Protective coatings and thin films: synthesis, characterization, and applications, p. 215, Springer, ISBN 0-7923-4380-8.
  25. ^ Milton Ohring (1995). Engineering materials science, Volume 1 (ấn bản thứ 3). Academic Press. tr. 561. ISBN 978-0125249959.
  26. ^ Physical properties of sea water Lưu trữ 2018-01-18 tại Wayback Machine. Kayelaby.npl.co.uk. Truy cập 2011-12-17.
  27. ^ [1]. chemistry.stackexchange.com
  28. ^ Eranna, Golla (2014). Crystal Growth and Evaluation of Silicon for VLSI and ULSI. CRC Press. tr. 7. ISBN 978-1-4822-3281-3.
  29. ^ a b c Transmission Lines data. Transmission-line.net. Truy cập 2014-02-03.
  30. ^ R. M. Pashley; M. Rzechowicz; L. R. Pashley (2005). “De-Gassed Water is a Better Cleaning Agent”. The Journal of Physical Chemistry B. 109 (3): 1231–8. doi:10.1021/jp045975a. PMID 16851085.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  31. ^ Lawrence S. Pan, Don R. Kania, Diamond: electronic properties and applications, p. 140, Springer, 1994 ISBN 0-7923-9524-7.
  32. ^ S. D. Pawar; P. Murugavel; D. M. Lal (2009). “Effect of relative humidity and sea level pressure on electrical conductivity of air over Indian Ocean”. Journal of Geophysical Research. 114 (D2): D02205. Bibcode:2009JGRD..114.2205P. doi:10.1029/2007JD009716.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  33. ^ E. Seran; M. Godefroy; E. Pili (2016). “What we can learn from measurements of air electric conductivity in 222Rn ‐ rich atmosphere”. Earth and Space Science. 4 (2): 91–106. Bibcode:2017E&SS....4...91S. doi:10.1002/2016EA000241.Quản lý CS1: sử dụng tham số tác giả (liên kết)
  34. ^ Copper Wire Tables Lưu trữ 2010-08-21 tại Wayback Machine. US Dep. of Commerce. National Bureau of Standards Handbook. ngày 21 tháng 2 năm 1966

Đọc thêm

[sửa | sửa mã nguồn]
  • Paul Tipler (2004). Physics for Scientists and Engineers: Electricity, Magnetism, Light, and Elementary Modern Physics (ấn bản thứ 5). W. H. Freeman. ISBN 978-0-7167-0810-0.
  • Measuring Electrical Resistivity and Conductivity

Liên kết ngoài

[sửa | sửa mã nguồn] Wikibooks có một quyển sách tựa đề A-level Physics (Advancing Physics)/Resistivity and Conductivity
  • “Electrical Conductivity”. Sixty Symbols. Brady Haran for the University of Nottingham. 2010.
  • Comparison of the electrical conductivity of various elements in WolframAlpha
  • Partial and total conductivity. “Electrical conductivity” (PDF).

Từ khóa » đơn Vị đo điện Trở Suất