Điều Kiện để Hình Thang Cân Ngoại Tiếp đường Tròn - Hỏi Đáp
Có thể bạn quan tâm
Hình thang là một hình tuy đơn giản nhưng lại có nhiều tính chất phức tạp vì nó bao gồm nhiều trường hợp đặc biệt và định lý cần ghi nhớ. Vậy nên phần lý thuyết và bài tập của hình thang đều tương đối khó và đòi hỏi chúng ta phải nắm chắc kiến thứcvề đường thẳng song song,tam giác bằng nhau, đường trung bình, trung tuyến Hôm nay, Gia Sư Việt sẽ tổng hợp các kiến thức cơ bản về hình thang và hình thang cângiúpcác emhiểu rõtừngkhái niệm, tính chất và cách chứng minh nhé.
Nội dung chính Show- I. Hình thang
- 1. Khái niệm về hình thang
- 2. Tính chất hình thang
- 3. Cách chứng minh hình thang
- II. Hình thang cân
- 1. Khái niệm về hình thang cân
- 2. Tính chất hình thang cân
- 3. Cách chứng minh hình thang cân
- Video liên quan
I. Hình thang
1. Khái niệm về hình thang
Hình thang là tứ giác có hai cạnh đối song song.
Từ hình vẽ, ta thấy: Hình thang cân ABCD có AB // CD
2. Tính chất hình thang
Tính chất 1: Hai góc kề một cạnh bên của hình thang có tổng bằng 180 độ (nằm ở vị trí trong cùng phía của hai đoạn thẳng song song là 2 cạnh đáy).
Ví dụ: Hình thang ABCD (AB // CD)
=> Góc A +GócD = Góc B + GócC = 180°
Tính chất 2: Hình thang có 2 cạnh đáy bằng nhau thì hai cạnh bên sẽ song song và bằng nhau.
Ví dụ: Hình thang ABCD (AB // CD) có AB = CD
Xét tứ giác ABCD có: AB //CD và AB = CD
=> ABCD là hình bình hành nên AD//BC và AD = BC
Ngược lại, nếu hình thang có 2 cạnh bên song song thì chúng sẽ bằng nhau và 2 cạnh đáy bằng nhau.
Ví dụ: Hình thang ABCD (AB // CD), lại có AD // BC
Xét tứ giác ABCD có: AB // CD vàAD // BC
=> ABCD là hình bình hành nên AB = CD và AD = BC
Tính chất 3: Đường trung bình là đường thẳng nối trung điểm hai cạnh bên của hình thang.
Ví dụ: Hình thang ABCD (AB // CD) có E là trung điểm AD, F là trung điểm BC
=> MN là đường trung bình của hình thang ABCD
Tính chất 3.1: Đường thẳng đi qua trung điểm 1 cạnh bên của hình thang và song song với 2 cạnh đáy thì sẽ đi qua trung điểm của cạnh bên còn lại.
Ví dụ: Hình thang ABCD (AB // CD) có E là trung điểm AD, EF //AB (EF // CD) (F BC)
=> F là trung điểm BC
Tính chất 3.2: Đường trung bình của hình thang sẽ song song với 2 cạnh đáy và bằng 1/2 tổng 2 đáy.
Ví dụ: Hình thang ABCD (AB // CD) có EF là đường trung bình
=> EF// AB; EF // CDvà EF = (AB+CD)/2
3. Cách chứng minh hình thang
Cách 1: Chứng minh tứ giác đó có một cặp cạnh đối song song.
Ví dụ: Cho hình thang ABCD (AB // CD). Gọi E là giao điểm của hai đường thẳng AD và BC. Gọi M, N, P, Q theo thứ tự là các trung điểm của các đoạn thẳng AE, BE, AC và BD. Chứng minh tứ giác MNPQ là hình thang.
Ta có:
M là trung điểm của AE
N là trung điểm của BE
=> MN là đường trung bình ứng với cạnh AB của ΔEAB, suy ra MN // AB (1)
Gọi R là trung điểm của AD
Trong ΔADB, RQ là đường trung bình, suy ra RQ // AB
Trong ΔCAD, RP là đường trung bình, suy ra RP // DC
mà DC // AB nên RP // AB.
RQ và RP cùng đi qua R và cùng song song với AB nên theo tiên đề Ơclit thì RQ RP
Từ đây ta suy ra QP // AB (2)
Từ (1) và (2) suy ra MN // PQ => Tứ giác MNPQ là hình thang do một cặp cạnh đối song song.
Cách 2: Chứng minh tứ giác đó có tổng hai góc kề một cạnh bên bằng 180 độ.
Ví dụ: Cho tam giác ABC. Trên AC lấy một điểm B sao cho AB = AB và trên AB lấy một điểm C sao cho AC = AC. Chứng minh tứ giác BBCC là hình thang.
Ta có:
AB = AB
=> BAB cân tại A
=> Góc ABB = (180°- Â)/2
Chứng minh tương tự, ta có: Góc ACC = (180°- Â)/2
=> Góc ABB = Góc ACC
=> Góc ABB + Góc BBC = Góc ACC + Góc BBC
=> Góc ACC + Góc BBC = 180°
=> Tứ giác BBCC là hình thang do tổng hai góc kề một cạnh bên bằng 180°
II. Hình thang cân
1. Khái niệm về hình thang cân
Trong hình học Euclid, hình thang cân là hình thang có hai góc kề một cạnh đáy bằng nhau. Hình thang cân là 1 trường hợp đặc biệt của hình thang.
Từ khai niệm và theo hình vẽ, ta có:
Hình thang cân ABCD (AB // CD) =>Góc C = Góc D
2. Tính chất hình thang cân
Tính chất 1: Trong một hình thang cân, hai cạnh bên bằng nhau.
Ví dụ: ABCD là hình thang cân (AB // CD)
=> AD = BC
Tính chất 2: Trong một hình thang cân, hai đường chéo bằng nhau.
Ví dụ: Cho ABCD là hình thang cân (AB // CD)
=> AC = BD
Tính chất 3: Hình thang cân luôn nội tiếp được trong một đường tròn.
Ví dụ: ABCD là hình thang cân (AB // CD)
=> Luôn có một đường tròn tâm O nội tiếp hình thang này
3. Cách chứng minh hình thang cân
Cách 1: Hình thang có hai góc kề một cạnh đáy bằng nhau là hình thang cân.
Ví dụ: Cho tam giác ABC cân tại A. Trên các cạnh bên AB, AC lấy theo thứ tự các điểm D, E sao cho AD = AE. Chứng minh rằng BDEC là hình thang cân.
a) Ta có: AD = AE (gt) nên ADE cân
Góc D2= Góc E2
Mà góc A + D2 + E2 = góc A + B + C = 180°, trong khi góc B = C doΔABC cân tại A (gt). Vì vậy D2 = B ( vị trí đồng vị )
=> DE // BC, do đó BDEC là hình thang.
Lại có ΔABC cân tại A Góc B= Góc C
Nên BDEC là hình thang cânlà là hình thang có 2 góc đáy bằng nhau.
Cách 2: Hình thang có hai cạnh bên bằng nhau là hình thang cân.
Ví dụ: Hình thang ABCD (AB // CD) nội tiếp đường tròn tâm O. Chứng minh rằng ABCD là hình thang cân.
Ta có: ABCD là hình thang
=> Góc A1 = Góc C1
=> sđ cungCD = sđ cung AB
=> AB = CD
=> ABCD là hình thang cândo là hình thang có 2 cạnh bên bằng nhau.
Cách 3: Hình thang có hai đường chéo bằng nhau là hình thang cân.
Ví dụ: Hình thang ABCD (AB // CD) có góc ACD = góc BDC. Chứng minh rằng ABCD là hình thang cân.
Gọi E là giao điểm của AC và BD.
ECD có góc ACD = góc BDC nên là tam giác cân.
Suy ra EC = ED (1)
Tương tự xét EABcó: Góc ABE= BAE do cùng đều bằng góc ACD và gócBDC ( So le trong )
EAB tạiE suy ra: EA = EB (2)
Từ (1) và (2) ta có: EA + EC = EB + ED => AC = BD
=> ABCD là hình thang cân do là hình thang có 2 đườngchéo bằng nhau
Kết luận: Sau khicác em học sinhđã được tìm hiểu các kiến thức cơ bản về hình thang và hình thang cân. Chúng tôitin rằng, nội dung này sẽ không làm khó các bạn nữa vàgiúpđạt được điểm số tối đa trong mỗi bài thi. Hãy theo dõi Gia Sư Việt để học luôn cập nhập nhiều bài họckhác nhé. Ngoài ra, nếu phụ huynh cần thuê gia sư dạy Toán tại nhà cho con, vui lòng liên hệ qua số 096.446.0088 090.462.8800 để được tư vấn chi tiết.
Tham khảo thêm:
Tổng hợp kiến thức về các đường Đồng quy trong Tam giác
Khái niệm, tính chất và cách chứng minh tứ giác là Hình thoi
4.9 / 5 ( 87 bình chọn )Từ khóa » Tính Chất Hình Thang Cân Nội Tiếp đường Tròn
-
Cách Chứng Minh Hình Thang Cân Nhanh Nhất Và Bài Tập Vận Dụng
-
Hình Thang Cân Là Gì ? Hình Thang Cân Nội Tiếp Đường Tròn ?
-
Hình Thang Cân Là Gì ? Hình Thang Nội Tiếp đường Tròn - Mathvn
-
Hình Thang Cân Nội Tiếp đường Tròn Có Tính Chất Gì ? Bài Toán Minh Họa
-
Chứng Minh Hình Thang Nội Tiếp đường Tròn Là Hình Thang Cân
-
Cách Chứng Minh Hình Thang Cân Nội Tiếp đường Tròn - TopLoigiai
-
Cách Chứng Minh Hình Thang Nội Tiếp đường Tròn
-
Hình Thang Cân: Định Nghĩa, Tính Chất Và Phương Pháp Chứng Minh
-
Hình Thang Cân Là Gì ? Hình Thang Cân Nội Tiếp ... - .vn
-
Hình Thang Cân Là Gì ? Hình Thang Cân Nội Tiếp ... - TIP HAY
-
Chứng Minh Hình Thang Nội Tiếp đường Tròn Là Hình Thang Cân - 123doc
-
Hình Thang Cân Là Gì ? Hình Thang Cân Nội ... - .vn
-
Hình Thang ABCD Ngoại Tiếp đường Tròn Tâm O, đáy Nhỏ - Pitago.Vn
-
Tổng Hợp Kiến Thức Cơ Bản Về Hình Thang Và Hình Thang Cân