Dihedral Group:D10 - Groupprops - Subwiki
This article is about a particular group, i.e., a group unique upto isomorphism. View specific information (such as linear representation theory, subgroup structure) about this group View a complete list of particular groups (this is a very huge list!)[SHOW MORE]
VIEW FACTS ABOUT THIS GROUP: All factsGroup property satisfactionsSubgroup property satisfactionsGroup property dissatisfactionsSubgroup property satisfactionsVIEW DEFINITIONS USING THIS AS EXAMPLE: All terms |Group properties |Subgroup properties|VIEW FACTS USING THIS AS EXAMPLE: All facts |Group property non-implications |Subgroup property non-implications |Group metaproperty dissatisfactionsSubgroup metaproperty dissatisfactions
Definition
This group is defined as the dihedral group of order ten. In other words, it is the semidirect product of the cyclic group of order five and a cyclic group of order two.
Definition by presentation
The dihedral group , sometimes called , also called the dihedral group of order ten or the dihedral group of degree five (since its natural action is on five elements) is defined by the following presentation, with denoting the identity element:
Here, the element is termed the rotation or the generator of the cyclic piece and is termed the reflection.
Arithmetic functions
| Function | Value | Explanation |
|---|---|---|
| order | 10 | |
| exponent | 10 | |
| Fitting length | 2 | |
| Frattini length | 1 | |
| derived length | 2 |
Group properties
| Property | Satisfied | Explanation |
|---|---|---|
| cyclic group | No | |
| abelian group | No | |
| nilpotent group | No | |
| metacyclic group | Yes | |
| supersolvable group | Yes | |
| solvable group | Yes |
GAP implementation
Group ID
This finite group has order 10 and has ID 1 among the groups of order 10 in GAP's SmallGroup library. For context, there are groups of order 10. It can thus be defined using GAP's SmallGroup function as:
SmallGroup(10,1)
For instance, we can use the following assignment in GAP to create the group and name it :
gap> G := SmallGroup(10,1);
Conversely, to check whether a given group is in fact the group we want, we can use GAP's IdGroup function:
IdGroup(G) = [10,1]
or just do:
IdGroup(G)
to have GAP output the group ID, that we can then compare to what we want.
Other descriptions
This group can be defined using GAP's DihedralGroup function:
DihedralGroup(10)
Từ khóa » Nhóm D10
-
Tìm Hiểu Về Khối D10 Và Những Ngành, Trường Học đào Tạo?
-
Khối D10 Gồm Những Môn Nào? Xét Tuyển Ngành Nào? - TrangEdu
-
Khối D10 Gồm Môn Nào? Nên Chọn Học Ngành Và Trường Nào?
-
Khối D10 Gồm Những Môn Gì? Các Ngành Khối D10 Dễ Xin Việc ...
-
Khối D10 Là Gì? Gồm Những Môn Nào, Xét Ngành Nào, Trường Nào?
-
Tìm Hiểu Về Khối D10 Và Những Thông Tin Ngành Nghề, Trường đào Tạo
-
D10 Group Of Democracies: A Stronger Alliance To Contain China?
-
Những Thông Tin Bạn Cần Biết Khi Lựa Chọn Khối D10 - VGN
-
D10 Group | Build With Passion
-
D-10 Strategy Forum - Atlantic Council
-
Bite-angle Bending As A Key For Understanding Group-10 Metal ...
-
S203P-D10 - ABB