Định Lý Euler – Wikipedia Tiếng Việt
Có thể bạn quan tâm
Bài viết này cần thêm chú thích nguồn gốc để kiểm chứng thông tin. Mời bạn giúp hoàn thiện bài viết này bằng cách bổ sung chú thích tới các nguồn đáng tin cậy. Các nội dung không có nguồn có thể bị nghi ngờ và xóa bỏ. (Tìm hiểu cách thức và thời điểm xóa thông báo này) |
Bài viết hoặc đoạn này cần được wiki hóa để đáp ứng tiêu chuẩn quy cách định dạng và văn phong của Wikipedia. Xin hãy giúp sửa bài viết này bằng cách thêm bớt liên kết hoặc cải thiện bố cục và cách trình bày bài. |
Định lý Euler phát biểu rằng nếu n (n thuộc N*) là số nguyên dương bất kỳ và a là số nguyên tố cùng nhau với n, thì
trong đó φ(n) là ký hiệu của phi hàm Euler đếm số các số nguyên giữa 1 và n nguyên tố cùng nhau với n. Đây là tổng quát hóa của định lý nhỏ Fermat vì nếu n = p là số nguyên tố thì φ(p) = p − 1.
Định lý này có thể được sử dụng để dễ dàng giản ước với module n rất lớn. Ví dụ tìm chữ số tận cùng của số 7222.
7222 ≡ 74x55 + 2 ≡ (74)55x72 ≡ 155x72 ≡ 49 ≡ 9 (mod 10). Vậy 7222 có chữ số tận cùng là 9.
Định lý Euler cũng là định lý cơ bản của các hệ thống mã hóa RSA tuy nhiên, việc sử dụng định lý Euler là không đủ (và không cần thiết) để chứng nhận tính hợp lệ của mã hóa RSA. Trong RSA, kết quả ròng của lần đầu tiên mã hóa tin nhắn văn bản gốc, sau đó giải mã nó, sẽ tăng số mũ của một số đầu vào lớn bằng , đối với một số nguyên dương . Trong trường hợp số ban đầu tương đối nguyên tố với , định lý Euler sẽ đảm bảo rằng số đầu ra được giải mã bằng với số đầu vào ban đầu, trả lại bản văn bản gốc. Tuy nhiên, vì là sản phẩm của hai số nguyên tố riêng biệt, và , khi số được mã hóa là bội số của hoặc , Định lý Euler không áp dụng và cần sử dụng quy định duy nhất của Định lý phần dư Trung Quốc. Định lý phần dư Trung Quốc cũng đủ trong trường hợp số tương đối nguyên tố với , và do đó định lý Euler không đủ và cũng không cần thiết.
Chứng minh
[sửa | sửa mã nguồn]Gọi là các số nguyên dương nhỏ hơn và nguyên tố cùng nhau với . Với mọi 2 số phân biệt : . Do vậy, là một hoán vị theo mô-đun của .
Suy ra .
Giản ước đồng dư thức, .
Định lý đã được chứng minh
Tham khảo
[sửa | sửa mã nguồn]Bài viết này vẫn còn sơ khai. Bạn có thể giúp Wikipedia mở rộng nội dung để bài được hoàn chỉnh hơn.
|
Từ khóa » định Lý Euler Số Học
-
Định Lý Euclid–Euler – Wikipedia Tiếng Việt
-
Định Lý Nhỏ Fermat Và Phi Hàm Euler - Thien Hoang
-
Các ứng Dụng Của định Lý Euler Trong Số Học - 123doc
-
Tài Liệu định Lý Euler - Xemtailieu
-
Định Lý Euler - Wiki Tiếng Việt - Du Học Trung Quốc
-
Định Lý Fermat Nhỏ-Định Lý Euler - Các Bài Toán Và Vấn đề Về Số Học
-
Bài 6: Định Lý Fermat Nhỏ Và Hàm Phi Euler - Blog Nam Phạm
-
Định Lý Euler - · MATHS.VN
-
Định Lý Euler - Wiki Là Gì
-
Định Lý Fermat Về Tổng Của Hai Số Chính Phương - Wikiwand
-
[DOC] Chương 2 Giới Thiệu Về Lý Thuyết Số - FIT@MTA
-
[PDF] Số Học Qua Các định Lý Và Bài Toán - Art Of Problem Solving