Định Lý Pascal - Vườn Toán
Có thể bạn quan tâm
Trang
- Trang nhà
- Kỹ năng mềm
- Giới thiệu
Định lý Pascal
Kỳ trước chúng ta đã học về định lý lục giác Pascal. Định lý Pascal nói rằng nếu trên đường cônic chúng ta vẽ một hình lục giác nội tiếp thì ba cặp cạnh đối diện của hình lục giác sẽ cắt nhau tại ba điểm thẳng hàng. Ví dụ như ở hình dưới đây, chúng ta có một hình lục giác nội tiếp một đường tròn, chúng ta thấy rằng ba giao điểm của ba cặp cạnh đối diện $\{12, 45\}$, $\{23, 56\}$, $\{34, 61\}$ của hình lục giác thẳng hàng. Có một công cụ rất hiệu quả thường dùng để chứng minh các điểm thẳng hàng, đó là định lý Menelaus. Định lý Menelaus phát biểu như sau:Định lý Menelaus: Cho tam giác $ABC$ và ba điểm $A'$, $B'$, $C'$ lần lượt nằm trên ba đường thẳng $BC$, $CA$, $AB$. Vậy thì ba điểm $A'$, $B'$, $C'$ thẳng hàng khi và chỉ khi $$\frac{\vec{A'B}}{\vec{A'C}} \times \frac{\vec{B'C}}{\vec{B'A}} \times \frac{\vec{C'A}}{\vec{C'B}} = 1.$$Hôm nay chúng ta sẽ dùng định lý Menelaus để chứng minh định lý Pascal cho trường hợp đường tròn. Khi chúng ta muốn dùng định lý Menelaus để chứng minh ba điểm nào đó thẳng hàng, chúng ta cần tìm một hình tam giác sao cho ba điểm cần chứng minh nằm trên ba cạnh của tam giác này. Nhìn hình vẽ dưới đây, với lục giác Pascal $P_1 P_2 P_3 P_4 P_5 P_6$, để chứng minh ba giao điểm $M_1$, $M_2$, $M_3$ thẳng hàng, chúng ta cần tìm một tam giác mà ba giao điểm $M_1$, $M_2$, $M_3$ nằm trên ba cạnh của tam giác đó. Vì các giao điểm $M_1$, $M_2$, $M_3$ nằm trên các cạnh của lục giác nên chúng ta thấy có hai cách chọn khá là tự nhiên. Đó là tam giác $ABC$, hoặc là tam giác $XYZ$. Chẳng hạn, nếu chúng chọn tam giác $ABC$ thì điểm $M_1$ nằm trên đường thẳng $BC$, điểm $M_2$ nằm trên đường thẳng $CA$ và điểm $M_3$ nằm trên đường thẳng $AB$. Bây giờ chúng ta cần chứng minh tỷ lệ $$\frac{\vec{M_1 B}}{\vec{M_1 C}} \times \frac{\vec{M_2 C}}{\vec{M_2 A}} \times \frac{\vec{M_3 A}}{\vec{M_3 B}} = 1.$$ Để tính được các tỷ lệ này, chúng ta sẽ sử dụng định lý Menelaus cho các bộ điểm thẳng hàng sau: $$\{M_1, P_5, P_6\}, ~~\{M_2, P_3, P_4\}, ~~\{M_3, P_1, P_2\}.$$ Bây giờ chúng ta sẽ viết cụ thể cách chứng minh. Chứng minh Định lý Pascal Chúng ta sẽ sử dụng định lý Menelaus cho tam giác $ABC$. Vì ba điểm $M_1$, $M_2$, $M_3$ nằm trên ba cạnh của tam giác $ABC$ nên để chứng minh chúng thẳng hàng chúng ta cần chứng minh $$\frac{\vec{M_1 B}}{\vec{M_1 C}} \times \frac{\vec{M_2 C}}{\vec{M_2 A}} \times \frac{\vec{M_3 A}}{\vec{M_3 B}} = 1.$$ Thật vậy, sử dụng định lý Menelaus cho tam giác $ABC$ với các bộ ba điểm thẳng hàng $$\{M_1, P_6, P_5\}, ~~\{M_2, P_4, P_3\}, ~~\{M_3, P_2, P_1\},$$ chúng ta có $$\frac{\vec{M_1 B}}{\vec{M_1 C}} \times \frac{\vec{P_6 C}}{\vec{P_6 A}} \times \frac{\vec{P_5 A}}{\vec{P_5 B}} = \frac{\vec{M_2 C}}{\vec{M_2 A}} \times \frac{\vec{P_4 A}}{\vec{P_4 B}} \times \frac{\vec{P_3 B}}{\vec{P_3 C}} = \frac{\vec{M_3 A}}{\vec{M_3 B}} \times \frac{\vec{P_2 B}}{\vec{P_2 C}} \times \frac{\vec{P_1 C}}{\vec{P_1 A}} = 1.$$ Do đó $$\frac{\vec{M_1 B}}{\vec{M_1 C}} = \frac{\vec{P_6 A}}{\vec{P_6 C}} \times \frac{\vec{P_5 B}}{\vec{P_5 A}}, ~~~\frac{\vec{M_2 C}}{\vec{M_2 A}} = \frac{\vec{P_4 B}}{\vec{P_4 A}} \times \frac{\vec{P_3 C}}{\vec{P_3 B}}, ~~~\frac{\vec{M_3 A}}{\vec{M_3 B}} = \frac{\vec{P_2 C}}{\vec{P_2 B}} \times \frac{\vec{P_1 A}}{\vec{P_1 C}}.$$ Từ đó, chúng ta có $$\frac{\vec{M_1 B}}{\vec{M_1 C}} \times \frac{\vec{M_2 C}}{\vec{M_2 A}} \times \frac{\vec{M_3 A}}{\vec{M_3 B}} = \frac{\vec{P_6 A}}{\vec{P_6 C}} \times \frac{\vec{P_5 B}}{\vec{P_5 A}} \times \frac{\vec{P_4 B}}{\vec{P_4 A}} \times \frac{\vec{P_3 C}}{\vec{P_3 B}} \times \frac{\vec{P_2 C}}{\vec{P_2 B}} \times \frac{\vec{P_1 A}}{\vec{P_1 C}}$$ $$ = \frac{\vec{A P_1} ~\vec{A P_6}}{\vec{A P_4} ~\vec{A P_5}} \times \frac{\vec{B P_4} ~\vec{B P_5}}{\vec{B P_2} ~\vec{B P_3}} \times \frac{\vec{C P_2} ~\vec{C P_3}}{\vec{C P_1} ~\vec{C P_6}} = 1.$$
Phương tích: $\vec{A P_1} ~\vec{A P_6} = \vec{A P_4} ~\vec{A P_5}$; $\vec{B P_4} ~\vec{B P_5} = \vec{B P_2} ~\vec{B P_3}$; $\vec{C P_2} ~\vec{C P_3} = \vec{C P_1} ~\vec{C P_6}$. |
định lý Pappus |
Ủng hộ Vườn Toán trên facebook
Lưu trữ Blog
- ► 2017 (1)
- ► tháng 2 (1)
- ► 2016 (7)
- ► tháng 12 (1)
- ► tháng 10 (1)
- ► tháng 5 (1)
- ► tháng 4 (1)
- ► tháng 3 (2)
- ► tháng 2 (1)
- ► 2015 (12)
- ► tháng 12 (1)
- ► tháng 11 (1)
- ► tháng 10 (1)
- ► tháng 7 (1)
- ► tháng 5 (2)
- ► tháng 4 (4)
- ► tháng 3 (1)
- ► tháng 1 (1)
- ► 2014 (12)
- ► tháng 12 (1)
- ► tháng 11 (3)
- ► tháng 8 (1)
- ► tháng 7 (1)
- ► tháng 6 (1)
- ► tháng 4 (1)
- ► tháng 3 (1)
- ► tháng 2 (2)
- ► tháng 1 (1)
- ► 2012 (36)
- ► tháng 12 (1)
- ► tháng 11 (7)
- ► tháng 10 (3)
- ► tháng 9 (6)
- ► tháng 8 (5)
- ► tháng 7 (4)
- ► tháng 6 (6)
- ► tháng 5 (4)
- ► 2011 (7)
- ► tháng 1 (7)
English Version
Bài toán kết nối facebook
Phép nhân thời đồ đá
Mắt Biếc Hồ Thu
Lục giác kỳ diệu
Định lý Pitago
1 = 2012 = 2013
Dãy số Fibonacci và một bài toán xếp hình
James vẽ hình
Câu hỏi của James
Hình vuông số chính phương kỳ diệu của Vianney!
Câu đố mẹo về đo lường
Công thức lượng giác Gauss cho 17-giác đều
Chào năm mới 2014
Chào năm mới 2015
Chào năm mới 2016
Không gian 4 chiều là gì?
Dựng hình đa giác đều
Dựng đa giác đều 15 cạnh
Ngày số Pi (2015)
Ngày số Pi (2016)
0.9999999... có bằng 1 không? (2015)
Hình tam giác
Bàn cờ vua và kim tự tháp
Dãy số
Dãy số - Phần 1Dãy số - Phần 2
Dãy số - Phần 3
Dãy số - Phần 4
Dãy số - Phần 5
Dãy số - Phần 6
Dãy số - Phần 7
Dãy số - Phần 8
Dãy số - Phần 9
Đại số
Tam giác PascalQuy nạp
Quy nạp II
Quy nạp III
Nhị thức Newton
1 = 2012 = 2013
Đa thức nội suy Newton
Đa thức nội suy Lagrange
Chứng minh Định lý Wilson bằng công thức nội suy
Tổng luỹ thừa
Số phức
Số phứcCông thức Moivre
Lượng giác
Công thức lượng giác cho góc bội
Công thức lượng giác Gauss cho 17-giác đều
Ngày số Pi (2016)
Radian là gì?
Số học
modulo - Phần 1
modulo - Phần 2
modulo - Phần 3
modulo - Phần 4
modulo - Phần 5
modulo - Phần 6
Số nguyên tố
Định lý Euclid về số nguyên tố
Một vài bài toán về số nguyên tố
Định lý Wilson
Bộ số Pitago
Modulo cho số hữu tỷ
Modulo cho số hữu tỷ II
Chứng minh lại định lý Wilson
Bổ đề Bezout
Thuật toán Euclid
Tổng luỹ thừa
Tổng luỹ thừa và định lý Wolstenholme
Câu đố mẹo về đo lường
Dựng đa giác đều 15 cạnh
Bò đi con bọ cạp!
Liên phân số Fibonacci
Hằng đẳng thức Pitago
Hình vuông số kỳ diệu của Euler
Tổ hợp
Bài toán kết nối facebookDãy số Fibonacci và một bài toán xếp hình
Hằng đẳng thức về dãy số Fibonacci
Dãy số Fibonacci và tam giác Pascal
Hình học
Định lý PitagoĐịnh lý đường cao tam giác vuông
Định lý Morley
Phương tích
Trục đẳng phương và tâm đẳng phương
Định lý Ceva và Định lý Menelaus
Lục giác kỳ diệu
Định lý Pascal
Định lý Pappus
Cánh bướm Pascal
Bài toán con bướm
Định lý Ngôi Sao Do Thái
Hãy xem xét trường hợp đặc biệt
Bài toán về tìm khoảng cách ngắn nhất và một tính chất của hình elíp
Điểm Fermat của hình tam giác
Điểm Fermat của hình tam giác II
Dựng hình
Dựng hình bằng thước và compaBài toán chia hình tứ giác
Dựng hình ngũ giác đều
Dựng hình đa giác đều
Dựng đa giác đều 15 cạnh
Định lý đường cao tam giác vuông
Thuật toán dựng hình
Công thức lượng giác Gauss cho 17-giác đều
Dựng hình chỉ bằng compa
Dùng compa chia đều đoạn thẳng
Giải tích
Ngày số Pi 2015Chuỗi Taylor
Tổng nghịch đảo bình phương
Giúp bé thông minh
Xì-tin năng động
Tạp chí toán học
Kỹ năng mềm
Tạo lập tài khoản googleCách tạo blog toán học
Học toán trên Wolfram
Dịch tài liệu toán học
Viết văn bản toán học PDF trực tuyến bằng LaTeX
Chia xẻ tài liệu toán học trên Google Drive
Từ khóa » định Lý Pascal Hình Học
-
Định Lý Pascal – Wikipedia Tiếng Việt
-
Định Lí Pascal Và ứng Dụng Giải Các Bài Toán Hình Học Phẳng
-
Định Lí Pascal | Huy Cao's Blog
-
Đinh Lý Pascal Chứng Minh Hình Học - Tài Liệu Text - 123doc
-
[Wiki] Định Lý Pascal Là Gì? Chi Tiết Về Định Lý Pascal Update 2021
-
Định Lý Pascal - Các Bài Toán Và Vấn đề Về Hình Học - Diễn đàn ...
-
Định Lý Pascal - Wikimedia Tiếng Việt
-
Đề Tài Đường Thẳng Pascal - Ứng Dụng - Phát Triển
-
Một Số Dịnh Ly Hinh Học Nổi Tiếng Va Ap Dụng
-
HÌNH HỌC XẠ ẢNH I Bài 3.4 I Định Lý Pascal Và Định Lý Brianchon
-
[PDF] ĐỊNH LÝ SÁU ĐIỂM VÀ ỨNG DỤNG
-
Dùng định Lý Pascal Suy Biến Vào Bài Toán Chia đôi