Định Lý Stokes | Giải Tích
Có thể bạn quan tâm
Định lý Stokes (“Giải tích Toán học trên Đa tạp” của M. Spivak). Giả sử là dạng bậc trên và là một xích kỳ dị chiều trong Khi đó,
Tạm gác lại và dạng bậc được xác định nghĩa chính xác thế nào! Hiểu một cách đơn giản là miền được định hướng (một tập mở, bị chặn trong không gian 3 chiều, một mặt định hướng trong không gian 3 chiều, tập mở trong mặt phẳng) còn là biên của được định hướng phù hợp với Việc định hướng xin để phần sau! Một số ví dụ về dạng và các tổ hợp tuyến tính của chúng là các dạng bậc và các tổ hợp tuyến tính của chúng là các dạng bậc là dạng bậc
Khi đó, được tính như nào? Ta tính như phép tính vi phân thông thường, nghĩa là nó tuân theo tính tuyến tính, công thức vi phân của tích hai hàm, với chú ý là các biến thực sự nghĩa là và và những cái tương tự cũng được coi là hàm! Ví dụ, Chú ý, nên
Với cách như vậy ta có thể thiết lập dễ dàng các Định lý Green, Ostrogradski- Gauss, Stokes như sau.
Định lý Green. Lấy là tập mở, bị chặn trong mặt phẳng với biên được định hướng bằng cách: hướng dương của là hướng đi sao cho tay trái hướng vào trong Cho là các hàm khả vi liên tục đến biên. Ta có vi phân với chú ý có Khi đó,
Định lý Ostrogradski- Gauss. Cho là tập mở trong không gian 3 chiều, biên được định hướng: hướng dương được xác định bởi véc-tơ pháp tuyến đơn vị ngoài của trên biên Cho là các hàm khả vi liên tục đến tận biên. Ta có vi phân với chú ý và
Khi đó,
Định lý Stokes. Cho mặt trong không gian 3 chiều được định hướng dương bởi véc-tơ pháp tuyến có biên được định hướng dương là hướng ngược chiều kim đồng hồ nếu ta đứng tại điểm trên hướng của là hướng từ chân đến đầu. Cho là các hàm khả vi đến tận biên. Ta có vi phân
Khi đó,
Chia sẻ:
- X
Có liên quan
Từ khóa » định Lý Green Mở Rộng
-
Định Lý Green – Wikipedia Tiếng Việt
-
[PDF] ĐỊNH LÝ GREEN Định Lý Green Cho Chúng Ta Một Mối Quan Hệ Giữa ...
-
Định Lý Green Là Gì? Xem Xong 5 Phút Hiểu Luôn. - Tintuctuyensinh
-
Công Thức Green Và ứng Dụng để Tính Tích Phân đường Loại 2 | Bài Tập
-
Định Lý Green – Du Học Trung Quốc 2022 - Wiki Tiếng Việt
-
Định Lý Green–Tao - Wikiwand
-
[PDF] Tích Phân đường Và Tích Phân Mặt - DANG TUAN HIEP
-
Định Lý Green - Slide Vi Tích Phân A2 Chương 3 Tích Phân đường
-
Định Lý Green – Tao
-
[PDF] Chương Iii: Tích Phân ðường Và Tích Phân Mặt
-
[PDF] Bài Giảng GIẢI TÍCH II - Viện Toán ứng Dụng Và Tin Học
-
(PDF) Chương 16: Giải Tích Vectơ | Hưng Hồ