Đồ án Thiết Kế Bộ Lọc IIR Và Tính Toán Các Hệ Số Bộ Lọc Viết Bằng ...

  • Trang chủ
  • Đăng ký
  • Đăng nhập
  • Liên hệ

Thư viện tài liệu

Thư viện tài liệu trực tuyến lớn nhất, tổng hợp tài liệu nhiều lĩnh vực khác nhau như Kinh tế, Tài chính, Ngân hàng, CNTT, Ngoại ngữ, Khoa học...

Đồ án Thiết kế bộ lọc IIR và tính toán các hệ số bộ lọc viết bằng ngôn ngữ Matlab

Tài liệu Đồ án Thiết kế bộ lọc IIR và tính toán các hệ số bộ lọc viết bằng ngôn ngữ Matlab: 1 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƢỜNG ĐẠI HỌC DÂN LẬP HẢI PHÕNG ------------------------------- iso 9001:2008 ĐỒ ÁN TỐT NGHIỆP NGÀNH: ĐIỆN TỬ VIỄN THÔNG Ngƣời hƣớng dẫn: Thạc sỹ Nguyễn Văn Dƣơng Sinh viên : Nguyễn Văn Ngọc HẢI PHÕNG - 2010 2 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƢỜNG ĐẠI HỌC DÂN LẬP HẢI PHÕNG ----------------------------------- THIẾT KẾ BỘ LỌC SỐ IIR ĐỒ ÁN TỐT NGHIỆP ĐẠI HỌC CHÍNH QUY NGÀNH : ĐIỆN TỬ VIỄN THÔNG Ngƣời hƣớng dẫn : Thạc sỹ Nguyễn Văn Dƣơng Sinh viên : Nguyễn Văn Ngọc HẢI PHÕNG - 2010 3 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƢỜNG ĐẠI HỌC DÂN LẬP HẢI PHÕNG -------------------------------------- NHIỆM VỤ ĐỀ TÀI TỐT NGHIỆP Sinh viên : Nguyễn Văn Ngọc . Mã số : 100058. Lớp : ĐT1001. Ngành: Điện tử viễn thông. Tên đề tài : Thiết kế bộ lọc số. 4 NHIỆM VỤ ĐỀ TÀI 1. Nội dung và các yêu cầu cần giải quyết trong nhiệm vụ đề tài tốt nghiệp ( về lý luận, thực tiễn, các số liệu cần tính toán và các bản vẽ). .. .. .. .. .. ...

pdf66 trang | Chia sẻ: tranhong10 | Lượt xem: 2893 | Lượt tải: 3download Bạn đang xem trước 20 trang mẫu tài liệu Đồ án Thiết kế bộ lọc IIR và tính toán các hệ số bộ lọc viết bằng ngôn ngữ Matlab, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên 1 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƢỜNG ĐẠI HỌC DÂN LẬP HẢI PHÕNG ------------------------------- iso 9001:2008 ĐỒ ÁN TỐT NGHIỆP NGÀNH: ĐIỆN TỬ VIỄN THƠNG Ngƣời hƣớng dẫn: Thạc sỹ Nguyễn Văn Dƣơng Sinh viên : Nguyễn Văn Ngọc HẢI PHÕNG - 2010 2 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƢỜNG ĐẠI HỌC DÂN LẬP HẢI PHÕNG ----------------------------------- THIẾT KẾ BỘ LỌC SỐ IIR ĐỒ ÁN TỐT NGHIỆP ĐẠI HỌC CHÍNH QUY NGÀNH : ĐIỆN TỬ VIỄN THƠNG Ngƣời hƣớng dẫn : Thạc sỹ Nguyễn Văn Dƣơng Sinh viên : Nguyễn Văn Ngọc HẢI PHÕNG - 2010 3 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƢỜNG ĐẠI HỌC DÂN LẬP HẢI PHÕNG -------------------------------------- NHIỆM VỤ ĐỀ TÀI TỐT NGHIỆP Sinh viên : Nguyễn Văn Ngọc . Mã số : 100058. Lớp : ĐT1001. Ngành: Điện tử viễn thơng. Tên đề tài : Thiết kế bộ lọc số. 4 NHIỆM VỤ ĐỀ TÀI 1. Nội dung và các yêu cầu cần giải quyết trong nhiệm vụ đề tài tốt nghiệp ( về lý luận, thực tiễn, các số liệu cần tính tốn và các bản vẽ). .. .. .. .. .. .. .. .. .. .. 2. Các số liệu cần thiết để thiết kế, tính tốn. .. .. .. .. .. .. .. .. .. .. .. 3. Địa điểm thực tập tốt nghiệp. .. .. 5 .. 6 CÁN BỘ HƢỚNG DẪN ĐỀ TÀI TỐT NGHIỆP Ngƣời hƣớng dẫn thứ nhất: Họ và tên : Nguyễn Văn Dƣơng Học hàm, học vị: Thạc sỹ. Cơ quan cơng tác : Trƣờng Đại học Dân lập Hải Phịng. Nội dung hƣớng dẫn :.............................................................................................. .................. .. ................ ... ................. .. ................. .. Ngƣời hƣớng dẫn thứ hai: Họ và tên :............................................................................................................... Học hàm, học vị :.................................................................................................... Cơ quan cơng tác :.................................................................................................. Nội dung hƣớng dẫn :.............................................................................................. ................. .. ................. .. 7 ................. .. Đề tài tốt nghiệp đƣợc giao ngày ....... tháng ....... năm 2010. Yêu cầu phải hồn thành xong trƣớc ngày ....... tháng ....... năm 2010. Đã nhận nhiệm vụ ĐTTN Đã giao nhiệm vụ ĐTTN Sinh viên Người hướng dẫn Hải Phịng, ngày ....... tháng ....... năm 2010. HIỆU TRƢỞNG GS.TS.NGƢT Trần Hữu Nghị PHẦN NHẬN XÉT TĨM TẮT CỦA CÁN BỘ HƢỚNG DẪN 1. Tinh thần thái độ của sinh viên trong quá trình làm đề tài tốt nghiệp: .. .. .. .. .. .. .. .. .. .. .. 2. Đánh giá chất lƣợng của đồ án ( so với nội dung yêu cầu đã đề ra trong nhiệm vụ Đ.T.T.N trên các mặt lý luận, thực tiễn, tính tốn số liệu...): .. 8 .. .. .. .. .. .. .. .. 3. Cho điểm của cán bộ hƣớng dẫn (ghi cả số và chữ) : .. .. .. Hải Phịng, ngày ....... tháng ....... năm 2010. Cán bộ hƣớng dẫn PHẦN NHẬN XÉT TĨM TẮT CỦA NGƢỜI CHẤM PHẢN BIỆN 1. Đánh giá chất lƣợng đề tài tốt nghiệp về các mặt thu thập và phân tích số liệu ban đầu, cơ sở lý luận chọn phƣơng án tối ƣu, cách tính tốn chất lƣợng thuyết minh và bản vẽ, giá trị lý luận và thực tiễn đề tài. .. .. .. .. .. .. .. .. 9 .. .. 2. Cho điểm của cán bộ phản biện. (Điểm ghi cả số và chữ). .. .. .. .. .. .. .. .. .. Hải Phịng, ngày ....... tháng ....... năm 2010. Ngƣời chấm phản biện 10 LỜI MỞ ĐẦU Tín hiệu xuất hiện hầu nhƣ ở tất cả các ngành khoa học và kĩ thuật; ví nhƣ trong âm học, sinh học, thơng tin liên lạc, hệ thống điều khiển, rađa, vật lý học, địa chất học và khí tƣợng học. Cĩ hai dạng tín hiệu đƣợc biết đến. Đĩ là tín hiệu liên tục theo thời gian và tín hiệu rời rạc theo thời gian. Một tín hiệu rời rạc, cũng nhƣ một tín hiệu liên tục, cĩ thể đƣợc biểu diễn bởi một hàm của tần số và đƣợc biết đến nhƣ là phổ tần của tín hiệu. Lọc số là một quá trình mà ở đĩ phổ tần của tín hiệu cĩ thể bị thay đổi, biến dạng tuỳ thuộc vào một số đặc tính mong muốn. Nĩ cĩ thể dẫn đến sự khuếch đại hoặc suy giảm trong một dải tần số, bỏ đi hoặc cơ lập một thành phần tần số cụ thể, Sử dụng bộ lọc số rất nhiều vẻ, ví nhƣ: để loại đi thành phần làm bẩn tín hiệu nhƣ nhiễu, loại bỏ méo xuyên giữa các kênh truyền dẫn hoặc sai lệch trong đo lƣờng, để phân tách hai hoặc nhiều tín hiệu riêng biệt đã đƣợc trộn lẫn theo chủ định nhằm cực đại hố sự sử dụng kênh truyền, để phân tích các tín hiệu trong các thành phần tần số của chúng, để giải nén tín hiệu, để chuyển tín hiệu rời rạc theo thời gian sang tín hiệu liên tục theo thời gian. Bộ lọc số là một hệ thống số cĩ thể đƣợc sử dụng để lọc các tín hiệu rời rạc theo thời gian. Đồ án này trình bày lý thuyết thiết kế bộ lọc IIR và tính tốn các hệ số bộ lọc viết bằng ngơn ngữ MATLAB, đƣợc chia thành 3 chƣơng nhỏ: Chƣơng 1. Giới thiệu bộ lọc số: Chƣơng này giới thiệu khái quát về lý thuyết tín hiệu số và các bộ lọc số. Chƣơng 2. Thiết kế bộ lọc số IIR.: Chƣơng này trình bày phƣơng pháp biến đổi từ bộ lọc tƣơng tự sang bộ lọc số IIR và các cấu trúc thực thi bộ lọc số IIR Chƣơng 3. Ứng dụng thiết kế và xây dựng cấu trúc một bộ lọc số IIR bằng MATLAB. Hải Phịng 7/2010. 11 Chƣơng 1 BỘ LỌC SỐ 1.1.HÀM HỆ THỐNG Bộ lọc số là hệ thống tuyến tính bất biến theo thời gian. Thơng số vào và ra của hệ thống quan hệ với nhau bằng tổng chập knhkxny k , quan hệ trong miền Z đƣợc đƣa ra trong bảng (1.1). Y(Z)=H(Z).X(Z) (1.1.1) Chuyển đổi miền Z của đáp ứng xung đơn vị H(Z) đƣợc gọi là hàm hệ thống. Biến đổi Fourier của đáp ứng xung đơn vị H(ej ) là một hàm phức của , biểu diễn theo phần thực và phần ảo là H(e j )=Hr(e j )+jHi(e j ) (1.1.2) Hoặc biểu diễn dƣới dạng gĩc pha: jeHjjj eeHeH arg . (1.1.3) Một hệ thống tuyến tính bất biến nhân quả là dạng cĩ h(n)=0 với n<0. Một hệ thống ổn định là dạng với tất cả các thơng số đƣa vào hữu hạn tạo ra thơng số ra hữu hạn. Điều kiện cần và đủ cho một hệ thống tuyến tính bất biến ổn định là: n nh (1.1.4) Điều kiện đủ để tồn tại H(ej ). Thêm vào đĩ, tất cả các hệ thống tuyến tính bất biến đƣợc quan tâm để thực hiện nhƣ các bộ lọc cĩ một thuộc tính là các thơng số vào và ra thoả mãn phƣơng trình sai phân cĩ dạng: M r r N k k rnxbknyany 01 (1.1.5) Chuyển đổi sang miền Z cả hai vế của phƣơng trình ta đƣợc: N k k k M r r r Za Zb ZX ZY ZH 1 0 1 (1.1.6) 12 So sánh hai phƣơng trình trên, từ phƣơng trình sai phân (1.1.3) ta cĩ thể đạt đƣợc H(Z) trực tiếp bằng cách đồng nhất các hệ số của phần tử vào trễ trong (1.1.5) với các luỹ thừa tƣơng ứng Z-1. Hàm hệ thống H(Z) là một hàm hữu tỉ của Z-1. Nĩ cĩ thể đƣợc biểu diễn bằng dạng điểm cực và điểm khơng trong mặt phẳng Z. Nhƣ vậy H(Z) cĩ thể viết dạng: N k k M r r Zd ZcA ZH 1 1 1 1 1 1 (1.1.7) Nhƣ chúng ta đã xét trong miền Z, hệ thống nhân quả sẽ cĩ miền hội tụ dạng 1 RZ . Nếu hệ thống cũng là ổn định thì R1 phải nhỏ hơn giá trị đơn vị, do đĩ miền hội tụ bao gồm là vịng trịn đơn vị. Nhƣ vậy trong hệ thống bất biến, nhân quả thì tất cả các điểm cực của H(Z) phải nằn trong vịng trịn đơn vị. Để thuận tiện, ta phân thành các lớp hệ thống, những lớp này bao gồm hệ thống đáp ứng xung hữu hạn (Finit duration Impulse Response_FIR), và hệ thống đáp ứng xung vơ hạn (Infinit duration Impulse Response_IIR). 1.1.1. Hệ thống FIR Nếu các hệ số ak trong phƣơng trình (1.1.5) bằng khơng, khi đĩ phƣơng trình sai phân sẽ là: M r r rnxbny 0 (1.1.8) Từ (1.1.8) chúng ta thấy rằng: l¹i cßn n c¸c víi 0 Mn0 nb nh (1.1.9) Hệ thống FIR cĩ rất nhiều thuộc tính quan trọng, trƣớc tiên chúng ta chú ý rằng H(Z) chỉ cĩ điểm khơng là một đa thức của Z-1 và tất cả các điểm cực của H(Z) đều bằng khơng, tức là H(Z) chỉ cĩ điểm khơng. Thêm nữa, hệ thống FIR cĩ thể cĩ chính xác pha tuyến tính. Nếu h(n) xác định theo cơng thức sau nMhnh (1.1.10) thì H(e j ) cĩ dạng ZMjjj eeAeH . (1.1.11) 13 H(e j ) chỉ cĩ phần thực hoặc phần ảo tuỳ thuộc vào chƣơng trình (1.1.10) lấy dấu (+) hay dấu (-). Dạng pha tuyến tính chính xác thƣờng rất hữu ích trong các ứng dụng xử lý tiếng nĩi, khi mà xác định thứ tự thời gian là cần thiết. Các thuộc tính này của bộ lọc FIR cũng cĩ thể đơn giản hố vấn đề xấp xỉ, nĩ chỉ xét đến khi đáp ứng độ lớn cần thiết. Khoảng sai số mà đƣợc bù để thiết kế các bộ lọc với đáp ứng xung pha tuyến tính chính xác là phần mà một khoảng thời gian tồn tại đáp ứng xung phù hợp đƣợc yêu cầu để xấp xỉ phần nhọn bộ lọc bi cắt đi. Dựa trên những thuộc tính chung với bộ lọc FIR pha tuyến tính, ngƣời ta đã phát triển ba phƣơng pháp thiết kế xấp xỉ. Những phƣơng pháp này là:  Thiết kế cửa sổ  Thiết kế mẫu tần số  Thiết kế tối ƣu Chỉ phƣơng pháp đầu tiên là phƣơng pháp phân tích, thiết kế khối khép kín tạo bởi các phƣơng trình cĩ thể giải để nhân đƣợc các hệ số bộ lọc. Phƣơng pháp thứ hai và phƣơng pháp thứ ba là phƣơng pháp tối ƣu hố, nĩ sử dụng phƣơng pháp lặp liên tiếp để đƣợc thiết kế bộ lọc. Hình 1.1. Mạng số cho hệ thống FIR Bộ lọc số thƣờng đƣợc biểu diễn dạng biểu đồ khối, nhƣ hình (1.1) ta biểu diễn phƣơng trình sai phân (1.1.8). Sơ đồ nhƣ vậy thƣờng đƣợc gọi là một cấu trúc bộ lọc số. Trên sơ đồ, biểu diễn các tốn tử yêu cầu tính giá trị mỗi dãy ra từ giá trị của dãy đƣa vào. Những phần tử cơ bản của sơ đồ biểu diễn ý nghĩa phép cộng, nhân các giá trị của dãy với hằng số (các hằng số trên nhánh hàm ý phép nhân), và chứa các giá trị trƣớc của dãy vào. Vì vậy biểu đồ khối đƣa ra chỉ dẫn rõ ràng về tính phức tạp của hệ thống. 1.1.2. Hệ thống IIR Nếu hàm hệ thống của phƣơng trình (1.1.7) cĩ các điểm cực cũng nhƣ điểm khơng, thì phƣơng trình sai phân (1.1.5) cĩ thể viết: Z-1 x(n) + Z-1 + Z-1 x(n-2) + x(n-M) + x(n-M-1) b0 b1 b2 bM-1 bM 14 M r r N k k rnxbknyany 01 (1.1.12) Phƣơng trình này là cơng thức truy hồi, nĩ cĩ thể đƣợc sử dụng để tính giá trị của dãy ra từ các giá trị trƣớc đĩ của thơng số ra và giá trị hiện tại, trƣớc đĩ của dãy đầu vào. Nếu M<N trong phƣơng trình (1.1.7), thì H(Z) cĩ thể biến đổi về dạng: N k k k Zd A ZH 1 11 (1.1.13) Cho hệ thống nhân quả, ta dễ dàng biểu diễn N k n kk nudAnh 1 (1.1.14) Ta cĩ thể thấy rằng dãy h(n) cĩ chiều dài vơ hạn. Tuy nhiên, vì cơng thức truy hồi (1.1.12) thƣờng dùng để thực hiện bộ lọc IIR, nĩ sử dụng ít phép tính hơn là đối với bộ lọc FIR. Điều này đặc biết đúng cho các bộ lọc lựa chọn tần số cắt nhọn. Cĩ nhiều phƣơng pháp thiết kế sẵn cĩ cho bộ lọc IIR. Những phƣơng pháp thiết cho bộ lọc lựa chọn tần số (thơng thấp, thơng dải, ...) một cách chung nhất là dựa trên những biến đổi của thiết kế tƣơng tự.  Các thiết kế Butterword  Các thiết kế Bessel  Các thiết kế Chebyshev  Các thiết kế Elliptic Tất cả những phƣơng pháp trên dùng phép phân tích tự nhiên và đƣợc ứng dụng rộng rãi để thiết kế các bộ lọc IIR. Thêm vào đĩ các phƣơng pháp tối ƣu hố IIR đã đƣợc phát triển cho thiết kế xấp xỉ liệt kê, điều này khơng dễ thích nghi với một trong các phƣơng pháp xấp xỉ trên. Sự khác nhau chính giữa FIR và IIR là IIR khơng thể thiết kế để cĩ pha tuyến tính chính xác, khi mà FIR cĩ những thuộc tính này, cịn bộ lọc IIR hiệu quả hơn trong thực hiện lọc cắt nhọn hơn là FIR. 15 1.2. ĐẶC TUYẾN TẦN SỐ CỦA BỘ LỌC 1.2.1. Đặc tuyến tần số của bộ lọc số lý tƣởng Việc thiết kế các bộ lọc số thực tế đều đi từ lý thuyết các bộ lọc số lý tƣởng. Chúng ta sẽ tiến hành nghiên cứu bốn bộ lọc số tiêu biểu là:  Bộ lọc số thơng thấp.  Bộ lọc số thơng cao  Bộ lọc số thơng dải  Bộ lọc số chắn dải Lọc ở đây chúng ta hiểu là lọc tần số chính, vì vậy mà tất cả các đặc trƣng của lọc tần số đều đƣợc cho theo đáp ứng biên độ. 1.2.1.1. Bộ lọc số thơng thấp lý tƣởng Trƣớc hết chúng ta định nghĩa thế nào là bộ lọc thơng thấp lý tƣởng. Bộ lọc thơng thấp lý tƣởng định nghĩa theo đáp ứng biên độ. Định nghĩa: Đáp ứng biên độ của bộ lọc số thơng thấp lý tƣởng đƣợc định nghĩa nhƣ sau: . 1 - 0 cịn l i c cjH e a jH e 1 cc Hình 1.2.1.1 . Đồ thị của đáp ứng biên độ của bộ lọc số thơng thấp lý tƣởng Nhận xét: Ở đây jH e là đối xứng, tức là chúng ta đã định nghĩa bộ lọc số thơng thấp lý tƣởng với h n là thực, sau này nếu jH e là đối xứng thì ta chỉ cần xét một nửa chu kì 0 là đủ. 16 Nếu chỉ xét trong một nửa chu kỳ thì các tham số của bộ lọc số thơng thấp lý tƣởng sẽ nhƣ sau: c : tần số cắt 0 c :dải thơng c :dải chắn 1 2 1 1 3 h n 0 1 2 3 n 1 5 Tâm đối xứng Hình 1.2.1.2: Đồ thị đáp ứng xung h n của bộ lọc số thơng thấp lý tƣởng pha khơng 0 với tần số cắt 2 c -Đáp ứng xung h n là đối xứng, bởi vì đáp ứng pha là tuyến tính. -Tâm đối xứng của h n nằm tại mẫu n=0, bởi vì pha 0 (trùng với trục hồnh). - Tại tất cả các mẫu là số nguyên lần của 2 (các mẫu chẵn) trừ tại n=0 thì 0h n bởi vì 2 c . Trong trƣờng hợp tổng quát c M (M nguyên dƣơng) thì tại các mẫu số nguyên lần của M . 0h n h mM - Các bộ lọc cĩ tần số cắt c M (M là nguyên dƣơng) đƣợc gọi là bộ lọc Nyquitst -Nếu 2 c gọi là bộ lọc nửa band, nếu c M gọi là bộ lọc một phần M band. 17 -Đáp ứng biên độ jH e của các bộ lọc số thơng thấp lý tƣởng là hồn tồn nhƣ nhau, nhƣng đáp ứng pha cĩ thể khác nhau. L H n -Là khơng nhân quả -Khơng thực hiện đƣợc về vật lý 1.2.1.2. Bộ lọc thơng cao lý tƣởng Cũng giống nhƣ bộ lọc số thơng thấp lý tƣởng, bộ lọc số thơng cao lý tƣởng cũng đƣợc định nghĩa theo đáp ứng biên độ Định nghĩa: Đáp ứng biên độ của bộ lọc số thơng cao lý tƣởng đƣợc định nghĩa nhƣ sau: . 1 0 cịn l i c j cH e a jH e 1 c c Hình 1.2.1.3: Đồ thị của đáp ứng biên độ của bộ lọc số thơng cao lý tƣởng. Nhận xét : Cũng giống nhƣ bộ lọc số thơng thấp lý tƣởng, jH e là đối xứng nhƣ vậy h n là thực và nhƣ vậy trong miền tần số ta chỉ xét jH e trong một nửa chu kỳ 0 là đủ. Nếu xét trong một nửa chu kỳ thì các tham số của bộ lọc thơng cao lý tƣởng sẽ nhƣ sau: c : tần số cắt 18 0 c : dải chắn c : dải thơng 1 2 h n 0 1 2 3 n Tâm đối xứng 1 3 1 1 5 Hình 1.2.1.4: Đáp ứng xung h n của bộ lọc số thơng cao lý tƣởng pha khơng 0 với tần số cắt 2 c . Cũng giống nhƣ bộ lọc số thơng thấp lý tƣởng pha khơng, đối với bộ lọc số thơng cao lý tƣởng thì h n là đối xứng và tâm đối xứng nằm tại mẫu n=0 bởi vì là tuyến tính và 0 . -Nếu ta ký hiệu bộ lọc số thơng thấp là jlpH e và lph n ; bộ lọc thơng cao là jhpH e và hph n thì ta thấy rằng đối với các bộ lọc pha khơng ta cĩ quan hệ sau đây: 1 0 0 0 lp hp lp h n h n h n n - Ta thấy rằng n chính là đáp ứng xung của bộ lọc thơng tất pha khơng và đáp ứng biên độ của bộ lọc thơng tất là japH e đƣợc định nghĩa nhƣ sau: 1 japH e 19 jH e 1 0 Hình 1.2.1.5: Đáp ứng biên độ của bộ lọc số thơng tất japH e . Nhƣ vậy bộ lọc thơng tất cho thơng qua tất cả các thành phần tần số, hay nĩi cách khác bộ lọc thơng tất là bộ lọc thơng thấp cĩ tần số cắt c (nếu xét trong nửa chu kỳ 0 ).Vì vậy bộ lọc thơng tất thƣờng dùng làm bộ di pha và việc thiết kế bộ lọc thơng tất chỉ theo các tiêu chuẩn kỹ thuật của đáp ứng pha, khơng cần xét đến đáp ứng biên độ vì trong cả dải tần japH e đều bằng 1. -Nếu các bộ lọc thơng thấp, thơng cao và thơng tất cĩ cùng đáp ứng pha ta sẽ cĩ quan hệ sau đây: hp ap lph n h n h n Và j j j hp ap lpH e H e H e Và ta cũng cĩ j j j hp ap lpH e H e H e 1.2.1.3. Bộ lọc số thơng dải lý tƣởng Định nghĩa theo đáp ứng biên độ Đáp ứng biên độ của bộ lọc số thơng dải lý tƣởng đƣợc định nghĩa nhƣ sau: 2 1 1 2 . 1 0 cịn l i c c j c cH e a 20 jH e 1 1c 1c 02 2c Hình1.2.1.6 Đồ thị đáp ứng biên độ của bộ lọc số thơng dải lý tƣởng . Nhận xét : Đáp ứng biên độ jH e là đối xứng trong một chu kỳ vì vậy chúng ta chỉ cần xét trong một nửa chu kỳ 0 . Trong một nửa chu kỳ này bộ lọc thơng dải chỉ cho thơng qua các thành phần tần số từ 1c đến 2c . Các tham số của bộ lọc thơng dải lý tƣởng nhƣ sau: 1c :tần số cắt dƣới. 2c : tần số cắt trên 1 2c c : dải thơng 1 2 0 c c : dải chắn h n 1 6 1 3 2 3 8 3 4 1 3 Hình 1.2.1.7: Đáp ứng xung h n của bộ lọc thơng dải lý tƣởng pha khơng 0 trong trƣờng hợp 1 3 c , 2 2 c . 21 Nếu ta cĩ hai bộ lọc thơng thấp cĩ tần số cắt là 1c và 2c và nếu hai bộ lọc này cĩ cùng đáp ứng pha thì bộ lọc thơng dải chính là hiệu của hai bộ lọc thơng thấp này, tức là: j lp j lp j bp eHeHeH 12 Ở đây: jbpH e là đáp ứng tần số của bộ lọc thơng dải. jbpH e là đáp ứng tần số của bộ lọc thơng thấp tần số cắt 2c . j bp eH là đáp ứng tần số của bộ lọc thơng thấp tần số cắt 1c . Và trong miền n ta cũng cĩ : 2 1 j j j bp lp lpH e H e H e Khi 1 2c c ta cĩ bộ lọc thơng dải dải hẹp. thƣờng đƣợc dùng làm bộ lọc cộng hƣởng. 1.2.1.4. Bộ lọc chắn dải lý tƣởng Định nghĩa: Đáp ứng biên độ của bộ lọc chắn dải lý tƣởng đƣợc định nghĩa nhƣ sau: 2 1 1 2 . 1 0 cịn l i c c cj c H e a 1 0 2 1c 1c 2c Hình 1.2.1.8 Đồ thị của đáp ứng biên độ của bộ lọc số chắn dải lý tƣởng 22 5 6 h n n Hinh 1.2.1.9 Đáp ứng xung sinsin 1 1 32. . 2 3 2 3 nn h n n n n của bộ lọc chắn dải lý tƣởng pha khơng trong trƣờng hợp 1 3 c , 2 2 c . Nhận xét: -Nếu các bộ lọc thơng tất, bộ lọc thơng dải và bộ lọc chắn dải cĩ cùng đáp ứng pha thì ta cĩ quan hệ sau : j j j bs ap bpH e H e H e Ở đây : j bsH e Là đáp ứng tần số của bộ lọc thơng dải. j apH e Là đáp ứng tầnsốcủa bộ lọc thơng tất. j bpH e Là đáp ứng tần số của bộ lọc thơng dải. Và tƣơng tự trong miền n ta cũng cĩ: bs ap bph n h n h n Kết luận chung về các bộ lọc lý tƣởng -Các bộ lọc lý tƣởng khơng thể thực hiện đƣợc về vật lý mặc dù ta đã xét trƣờng hợp h n thực bởi vì chiều dài của h n là vơ cùng, hơn nữa h n là khơng nhân quả, tức là: 23 , 0 khi 0 L h n h n n 1.2.2. Đặc tuyến tần số bộ lọc thực tế Các bộ lọc số thực tế đƣợc đặc trƣng bởi các tham số kỹ thuật trong miền tần số liên tục cĩ bốn tham số chính là: 1 : độ gợn sĩng ở dải thơng. 2 độ gợn sĩng ở dải chắn. p tần số giới hạn( biên tần) dải thơng. s tần số giới hạn (biên tần) dải chắn. Ngồi ra cịn tham số phụ là: s p : bề rộng dải quá độ Hình 1.2.2.1: Đặc tuyến thực tế của bộ lọc số thơng thấp Hình 1.2.2.1 là minh họa đối với bộ lọc thơng thấp đối với các bộ lọc số thơng cao, thơng dải và chắn dải chúng ta cũng tự suy ra các tham số kỹ thuật tƣơng ứng . 24 Chƣơng 2 THIẾT KẾ BỘ LỌC IIR Để thiết kế bộ lọc số IIR, ta cĩ một số phƣơng pháp nhƣ: thiết kế từ bộ lọc tƣơng tự, chuyển đổi tần số, phƣơng pháp bình phƣơng tối thiểu. Trong đĩ phổ biến nhất là phƣơng pháp thiết từ bộ lọc tƣơng tự, tức là ta thiết kế một bộ lọc tƣơng tự thỏa mãn các yêu cầu đặt ra, sau đĩ dùng các phƣơng pháp chuyển đổi từ miền Laplace sang miền Z ta đƣợc bộ lọc số. 2.1 BỘ LỌC TƢƠNG TỰ 2.1.1 Một số qui định đối với mạch lọc tƣơng tự Đáp ứng biên độ - tần số của mạch lọc thơng thấp tƣơng tự cĩ thể đƣợc biểu diễn dƣới dạng bình phƣơng hoặc theo thang dB nhƣ trên hình 2.1.1. Trong các trƣờng hợp, qui định của mạch lọc thơng thấp tƣơng tự đƣợc xác định: Đối với dải thơng 1 1 1 2 2 jH a ; p Đối với dải chặn 2 2 1 0 aH j A s Trong đĩ Là thơng số mấp mơ của dải thơng p Là tần số của dải thơng đo bằng rad/s A Là độ suy giảm của dải chặn s Là tần số cắt của dải chặn Các thơng số này chỉ ra trên hình 2.1.1 25 Hình 2.1.1. Đáp ứng biên độ của mạch lọc thơng thấp tƣơng tự. Từ đĩ ta đƣợc: 2 2 1 1 aH j khi p Và 2 2 1 aH j A khi s Các thơng số và A liên hệ với các thơng số pR và sA của thang đơn vị dB nhƣ trong hình 2.1.1. (c) bằng các hệ thức: 10 2 1 10log 1 pR  1010 1 pR Và 10 2 1 10logsA A  2010 sA A Ngồi ra độ mấp mơ 1 và 2 của thang đo giá trị tuyệt đối liên hệ với và A bằng các hệ thức: 1 2 1 1 1 1 1  1 1 2 1 Và 2 2 1 1 A  1 2 1 A 26 Đáp ứng tần số aH j của mạch lọc tƣơng tự liên hệ với hàm truyền aH s của nĩ bằng hệ thức: a a s jH j H s Nên 2 a a a s jH j H s H s Hay 2 a a a s j H s H s H j Do vậy, các điểm cực và điểm khơng của hàm bình phƣơng biên độ phân bố đối xứng qua trục ảo j . Giản đồ điểm cực/điểm khơng đặc trƣng của aH s aH s cho trên hình 2.1.2. Từ giản đồ này, chúng ta cĩ thể tìm đƣợc hàm truyền aH s của mạch lọc tƣơng tự cần thiết kế. Để mạch lọc tƣơng tự ổn định và nhân quả thì các điểm cực của hàm truyền bắt buộc phải nằm ở nửa trái của mặt phẳng –s. Các điểm khơng của aH s cĩ thể nằm ở đâu đĩ trong mặt phẳng –s, do đĩ chúng khơng xác định một cách duy nhất trừ khi tất cả đều nằm trên trục j . Chúng ta sẽ chọn các điểm khơng của aH s aH s nằm bên trong hoặc ngay trên trục j nhƣ các điểm khơng của aH s . Mạch lọc cĩ điểm khơng nhƣ vậy đƣợc gọi là mạch lọc pha cực tiểu. Hình 2.1.2 .Giản đồ điểm cực và khơng tiêu biểu của aH s aH s 27 2.1.2 Bộ lọc tƣơng tự Butterworth Bộ lọc thơng thấp Butterworth là loại hàm tồn cực đƣợc đặc trƣng bởi phƣơng trình đáp ứng biên độ tần số. 2 2 1 1 N c H (2.1. 1) ở đây N là cấp bộ lọc và c là tần số ứng với mức -3dB của nĩ (thƣờng gọi là tần số cắt). Vì H s H s ƣớc lƣợng tại s j đúng bằng 2 H nên 2 2 1 1 N c H s H s s (2.1.2) Các cực của H s H s xuất hiện trên đƣờng trịn bán kính c tại các điểm cách đều. Từ (2.1.2), ta tìm đƣợc. 2 12 1 2 1 j k NN c s e k=0,1,..,N-1 từ đĩ ta đƣợc: 2 1 22 j kj N k cs e e k=0, 1, N-1 (2.1.3) Đặc tuyến đáp ứng biên độ tần số của một lớp bộ lọc Butterworth đƣợc biểu diễn trong hình 2.1.3. với một số giá trị N. Ta lƣu ý rằng 2 H là đơn điệu trong dải thơng và dải chắn. Cấp bộ lọc (cần đạt suy giảm 2 tại tần số s ) đƣợc xác định một cách dễ dàng nhờ (2.1.3). Nhƣ vậy, tại s ta cĩ: 222 1 1 N s c 28 Từ đĩ ta đƣợc: 10 2 2 10 1 log 1 2log s c N (2.1.4) Nhƣ vậy các tham số N, 2 và tỷ số s c là đặc trƣng đầy đủ cho bộ lọc Butterworth. Hình 2.1.3. Đặc tuyến đáp ứng biên độ tần số của một lớp bộ lọc Butterworth. 2.1.3 Bộ lọc tƣơng tự Chebyshev Cĩ hai loại bộ lọc Chebyshev. Loại I là bộ lọc tồn cực, nĩ biểu lộ độ gợn sĩng đồng đều trong dải thơng và cĩ đặc tuyến đơn điệu trong dải chặn. Ngƣợc lại, bộ lọc Chebyshev loại II gồm cả điểm cực và khơng, thể hiện tính đơn điệu trong dải thơng và độ gợn song đều nhau trong dải chặn. Các điểm khơng của loại bộ lọc này nằm trên trục ảo thuộc mặt phẳng s. 29 a) Bộ lọc Chebyshev loại I Bình phƣơng đặc tuyến đáp ứng biên độ tần số của bộ lọc Chebyshev loại I là: 2 2 2 1 1 N c H T (2.1.5) ở đây là một tham số của bộ lọc, cĩ liên quan đến gợn sĩng trong dải thơng; NT x là đa thức Chebyshev bậc N và đƣợc định nghĩa nhƣ sau: 1cos cos 1 1 N N x x T x ch Nchx x (2.1.6) Cĩ thể tổng quát hĩa đa thức Chebyshev bằng phƣơng trình đệ quy: 1 12 N=1,2.........N N NT x xT x T x (2.1.7) ở đây 0 1T x và 1T x x . Ta cĩ 2 2 2 1T x x , 3 3 4T x x x các đa thức này cĩ các tính chất: 1) 1NT x với mọi 1x 2) 1 1NT với mọi N 3) Tất cả các nghiệm của đa thức NT x xuất hiện trong khoảng 1 1x Tham số lọc liên quan tới độ gợn sĩng trong băng thơng, nhƣ minh họa ở hình 2.1.4 , với N lẻ và chẵn. Đối với N lẻ, 0 0NT và do đĩ 2 0 1H . Mặt khác, với N chẵn, 0 1NT và do đĩ 2 20 1 1H . Tại tần số biên c , ta cĩ 1 1NT , vậy: 1 2 1 1 1 Hoặc tƣơng đƣơng 2 2 1 1 1 1 (2.1.8) ở đây 1 là giá trị gợn sĩng trong dải thơng Các cực của bộ lọc Chebyshev loại I nằm trên một elip thuộc mặt phẳng s với trục chính là: 30 2 1 1 2 cr (2.1.9) Và trục đối xứng là : 2 1 1 2 cr (2.1.10) ở đây quan hệ với theo phƣơng trình 1 21 1 N (2.1.11) Nếu ký hiệu vị trí gĩc của các cực bộ lọc Butterworth là: 2 1 k=0,1,2,....N-1 2 2 k k N (2.1.12) Thì các vị trí cực của bộ lọc Chebyshev sẽ nằm trên elip tại các tọa độ ,k kx y , k=0,1,2,..,N-1, với 2 1 os k=0,1,2,.....,N-1 sin k=0,1,2,.....,N-1 k k k k x r c y r (2.1.13) Hình 2.1.4 Đáp ứng biên độ tần số bộ lọc Chebyshev loại I b) Bộ lọc Chebyshev loại II Gồm cả điểm khơng và các điểm cực. Bình phƣơng của đáp ứng biên độ tần số là: 2 2 2 2 1 1 N s c N s H T T (2.1.14) 31 ở đây NT x cũng là đa thức Chebyshev bậc N và s là tần số dải chắn nhƣ ở hình 2.1.5 Các điểm khơng đƣợc đặt trên trục ảo, tại các điểm: k=0,1,2,........,N-1 sin s k k s j (2.1.15) Các điểm cực đƣợc đặt tại các tọa độ , wk kv , ở đây: 2 2 k=0,1,......,N-1s kk k k x v x y (2.1.16) 2 2 k=0,1,......,N-1s kk k k y w x y (2.1.17) Hình 2.1.5. Đáp ứng biên độ tần số bộ lọc Chebyshev loại II 2.1.4 Bộ lọc tƣơng tự Elip (Cauer) Bộ lọc Elip (hay Cauer) cĩ gợn sĩng đồng đều trong cả dải thơng và dải chắn đối với cả N lẻ và chẵn. Loại bộ lọc này bao gồm cả điểm cực và điểm khơng, đƣợc đặc trƣng bởi bình phƣơng đáp ứng biên độ tần số nhƣ sau: 2 2 1 1 N c H U (2.1.18) ở đây NU x là hàm Elip Jacobian bậc N, nĩ đƣợc Zverev tính theo phƣơng pháp lập bảng năm 1967 và là tham số liên quan tới độ gợn sĩng dải thơng. Các điểm khơng nằm trên trục j . Việc tổng hợp đạt đƣợc hiệu quả nhất nếu trải đều sai số gần đúng tồn bộ dải thơng và dải chắn. Bộ lọc Elip đạt đƣợc tiêu chuẩn này và vì thế là bộ 32 lọc tối ƣu nhất xét theo cấp nhỏ nhất với chỉ tiêu đặt ra. Nĩi khác đi, với một tập chỉ tiêu, bộ lọc Elip cĩ độ rộng băng chuyển tiếp nhỏ nhất. Cấp bộ lọc cần thiết để đạt tập chỉ tiêu đặt ra theo độ gợn sĩng dải thơng 1 , gợn sĩng dải chắn 2 , tỷ số chuyển tiếp c s đƣợc xác định nhƣ sau: 2 2 2 2 2 2 2 2 2 1 1 1 1 1 c s c s K K N K K (2.1.19) ở đây K x là tích phân Elips đầy đủ loại một và đƣợc tính theo cơng thức 2 2 2 0 1 sin d K x x (2.1.20) Theo tiêu chuẩn, bộ lọc Elip là tối ƣu, tuy nhiên xét trên thực tế bộ lọc Butterworth hay Chebyshev trong một số ứng dụng sẽ cĩ đặc tuyến đáp ứng pha tốt hơn. Trong dải thơng, đáp ứng pha của bộ lọc Elip khơng tuyến tính bằng bộ lọc Butterworth hay Chebyshev. 2.2. TỔNG HỢP BỘ LỌC SỐ IIR Tƣơng tự nhƣ bộ lọc số FIR, ngƣời ta thƣờng dùng một số phƣơng pháp tổng hợp bộ lọc số IIR cĩ đáp ứng xung cĩ chiều dài vơ hạn. Phƣơng pháp đƣợc đƣa ra ở đây là biến đổi từ bộ lọc tƣơng tự sang bộ lọc số theo các phép ánh xạ. Việc tổng hợp bộ lọc tƣơng tự đã đƣợc giới thiệu ở phần trƣớc, khi tổng hợp bộ lọc số IIR ta sẽ bắt đầu việc tổng hợp bộ lọc trong miền tƣơng tự tức là xác định hàm truyền đạt aH s và sau đĩ biến đổi sang miền số. Cĩ 3 phƣơng pháp chính để chuyển từ bộ lọc tƣơng tự sang bộ lọc số tƣơng đƣơng:  Phƣơng pháp bất biến xung  Phƣơng pháp biến đổi song tuyến  Phƣơng pháp tƣơng đƣơng vi phân Ngồi ra ta cĩ thể sử dụng phƣơng pháp biến đổi dải tần bộ lọc số thơng thấp đã đƣợc thiết kế để thiết kế các bộ lọc thơng thấp khác với tần số cắt khác hoặc bộ lọc thơng cao, thơng dải, chắn dải. 33 2.2.1 Cơ sở tổng hợp bộ lọc số IIR Ta cĩ thể mơ tả bộ lọc tƣơng tự bằng hàm hệ thống của nĩ: 0 0 2.2.1 M k k k a N k k k s B s H s A s s ở đây k và k là các hệ số lọc, hoặc bằng đáp ứng xung liên quan với aH s . Thơng qua biến đổi Laplace: 2.2.2staH s h t e dt Bộ lọc tƣơng tự cĩ hàm hệ thống hữu tỷ aH s . Cũng cĩ thể đƣợc mơ tả bằng phƣơng trình vi phân tuyến tính hệ số hằng: 0 2.2.3 k rN M k rk r k r d y t d x t dt dt với x t là tín hiệu vào và y t tín hiệu ra của bộ lọc. Một trong ba đặc trƣng tƣơng đƣơng của bộ lọc tƣơng tự sẽ tạo ra phƣơng pháp biến đổi bộ lọc sang miền tần số khác nhau. Ta biết rằng, hệ thống tuyến tính bất biến tƣơng tự với hàm hệ thống aH s là ổn định nếu tất cả các điểm cực phân bố tồn bộ bên trái của mặt phẳng s ( s là biến số phức s j ), do đĩ nếu phép biến đổi đạt đƣợc, nĩ sẽ cĩ tính chất sau: 1. Trục j trong mặt phẳng s sẽ ánh xạ lên đƣờng trịn đơn vị trong mặt phẳng z, nhƣ vậy sẽ cĩ quan hệ trực tiếp giữa hai biến tần số trong hai miền. 2. Nửa trái của mặt phẳng s sẽ ánh xạ vào phía trong đƣờng trịn đơn vị thuộc mặt phẳng z, nhƣ vậy một bộ lọc tƣơng tự ổn định sẽ đƣợc biến đổi thành bộ lọc số ổn định. Ta lƣu ý rằng thể hiện vật lý bộ lọc IIR ổn định khơng thể cĩ pha tuyến tính vì nếu hàm hệ thống của bộ lọc pha tuyến tính phải thỏa mãn điều kiện sau: 1 2.2.4NH z z H z . ở đây Nz biểu diễn độ trễ N đơn vị thời gian, bộ lọc sẽ cĩ điểm cực ánh xạ gƣơng ngồi đƣờng trịn đơn vị tƣơng ứng với mỗi điểm cực trong 34 đƣờng trịn này. Vì thế bộ lọc sẽ là khơng ổn định. Do đĩ, một bộ lọc IIR nhân quả và ổn định khơng thể cĩ pha tuyến tính. 2.2.2 Phƣơng pháp bất biến xung Trong phƣơng pháp bất biến xung, mục đích của ta là tổng hợp bộ lọc IIR cĩ đáp ứng xung đơn vị h n là phiên bản đƣợc lấy mẫu của đáp ứng xung bộ lọc tƣơng tự. Nghĩa là 1,2,3...... 2.2.5h n h nT n ở đây T là khoảng lấy mẫu Đƣợc biểu diễn trong phạm vi của việc lấy mẫu đáp ứng xung một bộ lọc tƣơng tự với đáp ứng tần số aH F , bộ lọc số với đáp ứng xung đơn vị h n h nT . Cĩ đáp ứng tần số 2.2.6s a s k H f F H f k F hoặc 1 2 2.2.7a k k H T H T T Rõ ràng, bộ lọc số với đáp ứng tần số jH e sẽ cĩ đặc tuyến đáp ứng tần số của bộ lọc tƣơng tự tƣơng ứng nếu chu kỳ lấy mẫu T đƣợc chọn là đủ nhỏ để tránh hồn tồn hoặc tối thiểu hĩa ảnh hƣởng của lấy mẫu. Điều rõ ràng là phƣơng pháp bất biến xung khơng phù hợp đối với bộ lọc thơng cao vì chồng phổ khi xử lý lấy mẫu. Muốn tìm hiểu sự ánh xạ giữa mặt phẳng z và mặt phẳng s đƣợc biểu thị bởi quá trình lấy mẫu, ta dựa vào cơng thức tổng quát (2.2.7) để cĩ mối liên hệ giữa biến đổi z của h n và biến đổi Laplace của ah t 1 2 2.2.8st az e k k H z H s j T T ở đây 0 0 st n n sTn z e n H z h n z H z h n e 2.2.9 35 Đặc tính chung của ánh xạ 2.2.10sTz e Cĩ thể đạt đƣợc bằng cách thay s j và biểu diễn biến phức z theo tọa độ cực jz re với sự thay thế này, (2.2.10) trở thành: j T j Tre e e Rõ ràng, ta phải cĩ Tr e T 2.2.11 do đĩ, 0 ứng với 0 1r và 0 ứng với 1r , khi 0 ta cĩ 1r . Nhƣ vậy nửa trái mặt phẳng s đƣợc ánh xạ vào trong vịng trịn đơn vị thuộc z và nửa phải mặt phẳng s đƣợc ánh xạ thành điểm ngồi đƣờng trịn đơn vị thuộc z. Đây là một trong những tính chất cĩ lợi của ánh xạ đang xét. Nhƣ đã chỉ ở trên, trục j cũng đƣợc ánh xạ lên đƣờng trịn đơn vị trong z, tuy nhiên sự ánh xạ này khơng theo một - một. Vì là duy nhất trên khoảng , , nên sự ánh xạ T hàm ý rằng khoảng T T ánh xạ lên các giá trị tƣơng ứng của . Ngồi ra, khoảng tần số 3T T cũng ánh xạ vào khoảng . Và nĩi chung khoảng 2 1 2 1k T k T đều nhƣ vậy, khi k là số nguyên. Nhƣ vậy việc ánh xạ từ tấn số tƣơng tự vào biến tần số trong miền tần số là nhiều lên một, nĩ là sự phản ánh ảnh hƣởng chồng phổ khi lấy mẫu. Hình 2.2.1 mơ tả sự ánh xạ từ mặt phẳng s lên mặt phẳng z. Hình 2.2.1. Sự ánh xạ sTz e của khoảng 2 T ( với 0 ) trong mặt phẳng s lên các điểm trong đƣờng trịn đơn vị thuộc mặt phẳng z. 36 Để tìm hiểu tiếp ảnh hƣởng của phƣơng pháp bất biến xung đến đặc tuyến bộ lọc thu đƣợc, ta hãy biểu diễn hàm hệ thống của bộ lọc tƣơng tự dƣới dạng phân thức tối giản, với giả thiết rằng các cực của bộ lọc tƣơng tự là phân biệt, ta cĩ thể viết : 1 2.2.12 N k a k k A H s s s ở đây pks là các cực của bộ lọc tƣơng tự và kA là các hệ số của khai triển phân thức, vậy 1 t 0 2.2.13pk N s t a k k h t A e Nếu lấy mẫu ah t một cách tuần hồn tại t nT ta cĩ: 1 pk a N s Tn k k h n h nT A e 2.2.14 Thay (2.2.14) vào hàm hệ thống bộ lọc số IIR sẽ là: 0 0 1 1 1 0 = 2.2.15 = pk pk n n N s Tn n k n k nN s T k k n H z h n z A e z A e z Tổng phía trong của (2.2.15) là hội tụ , vì 0pks và cĩ 1 1 0 1 2.2.16 1 pk pk n s T s T n e z e z Do đĩ, hàm hệ thống bộ lọc số là 1 1 2.2.17 1 pk N k s T k A H z e z Ta nhận thấy rằng bộ lọc số cĩ các cực trị 1,2,3,....., 2.2.18pk s T kz e k N Với hàm hệ thống H z này, bộ lọc số IIR dễ đƣợc thực hiện nhờ một dãy các bộ lọc đơn cực song song. 37 2.2.3 Phƣơng pháp biến đổi song tuyến Trong phần này ta sẽ trình bày sự ánh xạ mặt phẳng s vào mặt phẳng z, đƣợc gọi là biến đổi song tuyến. Biến đổi song tuyến tính là phép biến đổi trục j thành đƣờng trịn đơn vị trong mặt phẳng z chỉ một lần, nhƣ vậy tránh đƣợc sự nhầm lẫn mẫu của các thành phần tần số. Hơn nữa, tất cả các điểm trong nửa phải mặt phẳng s, đƣợc ánh xạ vào phía trong đƣờng trịn đơn vị và tất cả các điểm cực ở nửa phải mặt phẳng s đƣợc ánh xạ vào các điểm tƣơng ứng ngồi đƣờng trịn đơn vị thuộc mặt phẳng z. Biến đổi song tuyến cĩ thể liên kết với cơng thức hình thang để cho tích phân số. Ví dụ, xét bộ lọc tƣơng tự tuyến tính với hàm hệ thống: 2.2.19a b H s s a Hệ thống này cũng đƣợc đặc trƣng bởi phƣơng trình vi phân. 2.2.20 dy t ay t bx t dt Tránh sự thay thế phép đạo hàm bằng phép sai phân hữu hạn, giả sử rằng ta tích phân đạo hàm và lấy gần đúng nĩ bằng cơng thức hình thang, nhƣ vậy. 0 0' t t y t y d y t 2.2.21 Ở đây 'y t là ký hiệu của đạo hàm y t . Việc lấy gần đúng tích phân (2.2.21) bằng cơng thức hình thang tại t nT và ot nT T cho: ' ' 2 T y nT y nT y nT T y nT T 2.2.22 Đánh giá phƣơng trình vi phân (2.2.20) tại t nT đƣợc ' y nT ay nT bx nT 2.2.23 Ta dùng (2.2.23) để thay cho đạo hàm trong (2.2.20) và sẽ cĩ đƣợc phƣơng trình sai phân của hệ thống rời rạc tƣơng đƣơng. Với y n y nT và x n x nT ta cĩ kết quả: 1 1 1 1 2 2 2 aT aT bT y n y n x n x n 2.2.24 Biến đổi z của phƣơng trình sai phân này là: 1 11 1 1 2 2 2 aT aT bT y z z y z z X z 38 Do đĩ hàm hệ thống của bộ lọc số tƣơng đƣơng là: 1 1 1 2 1 1 2 2 bT zY z H z aT aTX z z hoặc 1 1 2 1 1 b H z z a T z 2.2.25 Rõ ràng, ánh xạ từ mặt phẳng s vào mặt phẳng z là: 1 1 2 1 2.2.26 1 z s T z Đây đƣợc gọi là biến đổi song tuyến tính 1 1 2 1 1 2.2.27a z s T z H z H s 2.2.4 Phƣơng pháp tƣơng đƣơng vi phân Một trong những phƣơng pháp đơn giản nhất để biến đổi bộ lọc tƣơng tự sang bộ lọc số là lấy gần đúng phƣơng trình vi phân bằng một phƣơng trình sai phân tƣơng đƣơng. Phép gần đúng này thƣờng đƣợc dùng để giải phƣơng trình vi phân tuyến tính hệ số hằng nhờ máy tính. Đối với đạo hàm dy t dt Tại t nT ta thay bằng phép sai phân lùi 1y nT y nT T , nhƣ vậy: 2.2.28 1 = t nT dy t y nT y nT T dt T y n y n T Ở đây T là khoảng lấy mẫu và y n y nT . Bộ vi phân tƣơng tự với tín hiệu ra dy t dt cĩ hàm hệ thống H s s . Trong khi đĩ hệ thống số tạo ra tín hiệu ra 1y nT y nT T lại cĩ hàm hệ thống là 11H z z T , do đĩ: 11 2.2.29 z s T 39 Hàm hệ thống của bộ lọc số IIR đạt đƣợc nhờ lấy gần đúng phép đạo hàm bằng phép sai phân hữu hạn là: 11 2.2.30a z s T H z H s aH s là hàm hệ thống của bộ lọc tƣơng tự. Ta hãy khảo sát phép nội suy của ánh xạ từ mặt phẳng z với 1 2.2.31 1 z sT Nếu ta thay s j trong (2.2.31), ta đƣợc 2 2 2 2 1 2.2.32 1 1 1 1 z j T T j T T Khi biến thiên từ đến quỹ tích tƣơng ứng của các điểm trong mặt phẳng z là một đƣờng trịn bán kính 1 2 và cĩ tâm tại 1 2 z nhƣ minh họa hình 2.2.2. Hình 2.2.2. Ánh xạ 11s z T biến LHP trong mặt phẳng s thành các điểm nằm bên trong đƣờng trịn bán kính 1 2 và tâm 1 2 trong mặt phẳng z. 40 2.2.5 Tổng hợp bộ lọc số IIR thơng cao, thơng dải và chắn dải bằng phép biến đổi dải tần. Ngồi phƣơng pháp biến đổi từ bộ lọc tƣơng tự sang bộ lọc số theo các phép ánh xạ từ mặt phẳng s sang mặt phẳng z, ta cĩ thể tổng hợp bộ lọc số từ bộ lọc số khác đã đƣợc thiết kế bằng cách ánh xạ biến 1z thành hàm hữu tỷ 1g z trong miền z. Chẳng hạn khi mạch lọc số thơng thấp đã đƣợc thiết kế, dùng phép biến đổi dải tần chúng ta cĩ thể chuyển đổi mạch lọc số thơng thấp đĩ thành mạch lọc thơng thấp khác cĩ đặc tính mới hoặc tới các mạch lọc thơng cao, thơng dải hay chắn dải mong muốn khác. Bảng sau cho các phép biến đổi đĩ. Loại mạch lọc Phép biến đổi Thơng số thiết kế Thơng thấp 11 11 z z z ' ' sin 2 sin 2 c c c c Trong đĩ 'c là tần số cắt mong muốn Thơng cao 11 11 z z z ' ' cos 2 cos 2 c c c c Trong đĩ 'c là tần số cắt mong muốn Thơng dải 2 11 1 2 2 1 2 1 1 z z z z z 1 2 1 K K 2 1 1 K K cos 2 cos 2 u l u l cot tan 2 2 u l cK u : tần số cắt phía cao l : tần số cắt phía thấp 41 Chắn dải 2 11 1 2 2 1 2 1 1 z z z z z 1 2 1K 2 1 1 K K cos 2 cos 2 u l u l cot tan 2 2 u l cK u : tần số cắt phía cao l : tần số cắt phía thấp 2.3. CẤU TRƯC BỘ LỌC IIR Nhƣ trong chƣơng 1, ta thấy rằng một hệ thống tuyến tính bất biến rời rạc sẽ đƣợc đặc trƣng bằng phƣơng trình sai phân tuyến tính hệ số hằng dạng tổng quát : 1 0 2.3.1 N M k r k r y n a y n k b x n k Nhờ biến đổi z, ta cĩ thể biểu diễn hệ thống tuyến tính bất biến rời rạc tƣơng tự nhƣ trên theo hàm truyền đạt hệ thống : 0 1 2.3.2 1 M r r r N k k k b z H z a z Từ hàm truyền đạt hệ thống, ta thấy các điểm khơng và các điểm cực sẽ phụ thuộc vào sự lựa chọn các tham số rb , ka của hệ. Ta xét các cấu trúc bộ lọc số IIR đƣợc mơ tả bằng phƣơng trình sai phân (2.3.1), hoặc hàm truyền tƣơng đƣơng (2.3.2), cũng giống nhƣ các hệ FIR, hệ IIR cũng cĩ một số loại cấu trúc khác nhau nhƣ: dạng trực tiếp, dạng nối tiếp, cấu trúc dàn và cấu trúc dàn thang, ngồi ra cịn cĩ thêm cấu trúc song song, bây giờ ta lần lƣợt xét từng loại cấu trúc. 42 2.3.1Cấu trúc bộ lọc số IIR dạng trực tiếp Hàm truyền đạt hữu tỷ đặc trƣng cho bộ lọc số IIR: 0 1 1 M r r r N k k k b z H z a z Cĩ thể xem nhƣ gồm hai hệ nối tiếp, nghĩa là: 1 2. 2.3.3H z H z H z ở đây 1H z chứa các khơng và 2H z chứa các cực của H z , tức là: 1 2 0 1 1 và 2.3.4 1 M r r N kr k k H z b z H z a z Hình 2.3.1. Cấu trúc bộ lọc IIR trực tiếp loại I Hệ tồn khơng Hệ tồn cực + + + + + + + 1z 1z 1z 1z 1z 0b 1b 2b 1Mb Mb 1a 2a 1Na Na y n x n + 1z 43 Ta cĩ cấu trúc trực tiếp loại một nhƣ chỉ ở hình 2.3.1, cấu trúc này địi hỏi M+N+1 ơ nhớ. Hình 2.3.2. cấu trúc trực tiếp loại II (M=N) Nếu bộ lọc tồn cực 2H z đặt trƣớc bộ lọc tồn khơng 1H z , sẽ đƣợc cấu trúc tối ƣu hơn đƣợc gọi là cấu trúc trực tiếp loại II nhƣ trong hình 2.3.2, cấu trúc này địi hỏi M+N+1 phép nhân, M+N phép cộng và cực đại của ,M N ơ nhớ, vì cấu trúc trực tiếp loại II tối thiểu hĩa đƣợc ơ nhớ nên nĩ đƣợc xem là chính tắc. Định lý chuyển vị phát biểu rằng nếu ta: + Tthay thế nút cộng bằng nút nhánh và ngược lại. + Đảo hướng của tất cả các hệ số truyền đạt nhánh và các nhánh. + Đổi chỗ tín hiệu vào và tín hiệu ra cho nhau. Thì hàm truyền đạt sẽ giữ nguyên khơng đổi. Cấu trúc thu đƣợc cĩ tên là cấu trúc chuyển vị hay dạng chuyển vị. + + + + + + + + 1z 1z 1z x n y n 0b 1b 2b 1Nb Nb Na 1Na 2a 1a 44 Ta hãy áp dụng định lý chuyển vị đối với cấu trúc trực tiếp loại II. Trƣớc hết, ta đảo hƣớng tất cả các luồng tín hiệu trong hình 2.3.2, tiếp đến ta đổi các nút thành bộ cộng và các bộ cộng thành các nút. Cuối cùng, ta đổi đầu vào, đầu ra cho nhau. Các thao tác này cho ta cáu trúc trực tiếp loại II đã chuyển vị nhƣ chỉ ở hình 2.3.3. Hình2.3.3 Cấu trúc bộ lọc IIR chuyển vị trực tiếp loại II Cuối cùng ta nhận thấy rằng, cấu trúc chuyển vị trực tiếp loại II địi hỏi số phép nhân phép cộng và số ơ nhớ giống nhƣ cấu trúc trực tiếp loại II ban đầu. + 1z 1z 1z + + + y n 0b x n 1b 1Nb Nb 1a 1Na Na 45 2.3.2 Cấu trúc bộ lọc số IIR dạng nối tiếp Giả sử ta xét một hệ IIR bậc cao cĩ hàm truyền đạt cho ở (2.3.2). Khơng mất tính tổng quát nếu ta giả thiết N M . Cĩ thể phân tích hệ thành các hệ con bậc hai nối tiếp, vì thế cĩ thể biểu diễn H z dƣới dạng: 1 2.35 k k k H z G H z ở đây k là phần nguyên của 1 2N , kH z cĩ dạng tổng quát : 1 2 1 2 1 2 1 2 1 2.3.6 1 k k k k k b z b z H z a z a z Và G là tham số khuếch đại cố định, xác định theo (2.3.2) là 0G b . Cũng giống nhƣ trƣờng hợp hệ FIR theo cấu trúc nối tiếp, tham số khuếch đại G cĩ thể đƣợc phân bố bằng nhau cho k mắt lọc sao cho 1 2 3.......... kG G G G G Các hệ số kia và kib Trong các hệ con bậc hai là thực. Điều này nĩi lên rằng, khi hình thành các hệ con bậc hai hay các thừa số bậc hai trong (2.3.6) ta phải nhĩm các cặp cực khơng liên hợp với nhau. Nếu N>M, một hệ thống con bậc hai sẽ cĩ các hệ số ở từ số bằng khơng, nghĩa là hoặc bk2=0 hoặc bk1=0 hoặc cả bk1=bk2=0 đối với mọi số k nào đấy. Hơn nữa, nếu N là lẻ, một trong các hệ con, chẳng hạn kH z phải cĩ ak2=0, vì thế hệ thống con là bậc nhất. Để duy trì tính modul khi thực hiện, thơng thƣờng ngƣời ta dùng hệ thống con bậc hai cơ bản trong cấu trúc nối tiếp và cĩ một vài hệ số lấy giá trị khơng ở một số hệ số con. Mỗi hệ số con bậc hai với hàm truyền đạt cĩ dạng (2.3.6) cĩ thể đƣợc thể hiện theo dạng trực tiếp loại II. Vì cĩ nhiều cách ghép cặp các cực và khơng của H z thành các mắt bậc hai nối tiếp và cĩ một số xếp thứ tự các hệ thống con, nên cĩ thể thu đƣợc các cấu trúc nối tiếp là tƣơng đƣơng đối với một cấp chính xác nhất định, các thể hiện khác nhau một cách đáng kể khi đƣợc thực hiện với các phép số học cĩ độ chính xác nhất định. Dạng tổng quát của cấu trúc nối tiếp đƣợc minh họa ở hình 2.3.4 46 Hinh 2.3.4: Cấu trúc nối tiếp các hệ thống bậc hai và thể hiện mỗi mắt lọc bậc hai 2.3.3Cấu trúc bộ lọc số IIR dạng song song Cấu trúc dạng song song của bộ lọc số IIR cĩ thể đƣợc hình thành từ biểu diễn phân thức của H z khơng mất tính tổng quát nếu ta lại giả thiết rằng N M và các cực là phân biệt. Sau đĩ, theo thực hiện khai triển phân thức của H z , ta lại cĩ: 1 1 2.3.7 1 N k z k k A H C p z Ở đây kp là các cực, kA là các hệ số (phần dƣ) trong khai triển phân thức và hằng số C đƣợc định nghĩa là N N b C a , cấu trúc do (2.3.7) tạo ra đƣợc trình bày ở hình 2.3.6. Nĩ gồm một dãy các bộ lọc đơn cực song song . Nĩi chung, một số cực của H z cĩ thể là giá trị phức. Trong trƣờng hợp nhƣ thế, các hệ số Ak tƣơng ứng là phức. Để tránh việc nhân số phức, ta cĩ thể ghép các cặp cực phức liên hợp phức để hình thành các hệ con hai cực. Ngồi ra, ta cĩ thể liên kết một cách tùy ý các cặp cực giá trị thực để tạo ra các hệ con hai cực. Mỗi hệ con này cĩ dạng : 1x n x n 1H z 2H z kH z G y n 2 2 x n y n k k x n y n kx n + + + + 1z 1z 1 1 1kb 1ka 2ka 2kb 1 kx n y 47 1 0 1 1 2 1 2 2.3.8 1 k k k k k b b z H z a z a z Ở đây, các hệ số kib và kia là tham số hệ thống lấy giá trị thực. Bây giờ hàm trên cĩ thể đƣợc biểu diễn là: 1 2.3.9 N k k H z C H z Với k là phần nguyên của (N+1)/2 khi N là lẻ, một trong kH z thật sự là một hệ đơn cực (nghĩa là, 1 2 0k kb a ). Cá biệt, các mắt bậc hai, là các khối cơ bản của H z , cĩ thể đƣợc thực hiện theo dạng trực tiếp hoặc theo dạng chuyển vị trực tiếp minh họa trong hình 2.3.6. 2.3.4 Cấu trúc bộ lọc số IIR dạng dàn (mắt cáo) Giả sử, ta bắt đầu với hệ tồn cực cĩ hàm truyền đạt: 1 1 1 2.3.10 1 N k N k k H z A z a z z Hình 2.3.5. Cấu trúc song song của hệ thống IIR Hình2.3.6. Cấu trúc của một mắt bậc 2 trong thể hiện hệ thống IIR song song + + + C 1H z 2H z kH z x n y n x n + + + 1z 1z 0kb 1kb 1ka 2ka 48 Cấu trúc dạng trực tiếp của hệ thống này đƣợc nêu ở hình 2.3.7 Hình 2.3.7. Cấu trúc dang trực tiếp của hệ tồn cực Phƣơng trình sai phân của hệ IIR là: 1 2.3.11 N N k y n a k x n k x n Nếu thay đổi vai trị của đầu vào và đầu ra (nghĩa là đổi lẫn nhau) x n và y n ) ta cĩ 1 N N k x n a k x n k y n Hoặc tƣơng đƣơng 1 2.3.12 N N k y n x n a k x n k Ta nhận thấy rằng phƣơng trình 2.3.12 mơ tả một hệ FIR cĩ hàm truyền đạt NH z A z . Trong khi đĩ phƣơng trình sai phân 2.3.11 mơ tả một hệ IIR cĩ hàm truyền đạt 1 NH z A z . Một hệ cĩ thể đƣợc thiết lập từ hệ khác bằng việc đổi lẫn nhau vai trị vào ra. Trên cơ sở nhận xét này, ta dùng dàn tồn khơng (FIR) để tạo ra cấu trúc dàn đối với hệ tồn cực IIR bằng cách đổi lẫn nhau vai trị đầu vào, đầu ra. Trƣớc hết ta lấy bộ lọc dàn tồn khơng đã đƣợc nêu ở hình 2.3.8. và định nghĩa tại đầu vào nhƣ sau: 2.3.13Nx n f n Và đầu ra là 0 2.3.14y n f n 1z 1z 1z + + + + x n y n 1Na 2Na 1Na N Na N 49 Hình 2.3.8 Bộ lọc dàn (M-1) tầng Đây là sự ngƣợc lại chính xác các định nghĩa về bộ lọc dàn tồn khơng. Các dịnh nghĩa này chỉ ra rằng các đại lƣợng mf n sẽ đƣợc tính theo sự giảm bậc (nghĩa là 1, .........1N N Nf n f n f n ) cĩ thể thực hiện việc tính tốn này bằng cách sắp xếp lại phƣơng trình đệ quy và giải tìm 1mf n theo mf n tức là: 1 1 1 m=N,N-1,...........,1m m m mf n f n k g n Hình 2.3.9. Cấu trúc dàn hệ IIR tồn cực + + + 1z 1z 1z + + N N k k N N k k N N k k 2 2 k k N N k k 1 1 k k + 0g n 1g n 2g n Ng n Đầu vào N x n f n 1f n 2f n 0f n y n Đầu ra Tầng thứ hai Tầng thứ nhất Tầng thứ M-1 1z nf 0 nf 2 nf1 nynf M 1 ng0 ng1 ng2 nf m nx M-1 ngm + + m m k k nfM 1 ng M 1 nx (a) (b) 50 Kết quả của việc thay đổi này là tập các phƣơng trình: 2.3.15Nf n x n 1 1 1 , 1,.....1 2.3.16m m m mf n f n K g n m N N 1 1 1 , 1,.....1 2.3.17m m m mg n K n f n g n m N N 0 0 2.3.18y n f n g n Hệ phƣơng trình này tƣơng ứng với cấu trúc nhƣ ở hình 2.3.9. Để chứng minh rằng hệ các phƣơng trình từ (2.3.15) đến (2.3.18) biểu diễn bộ lọc số IIR tồn cực, ta hãy nhận xét trƣờng hợp N=1. Các phƣơng trình trên đƣợc rút gọn thành: 1 0 1 1 0 1 1 0 0 1 , 1,.....,1 1 , 1,.....1 f n x n f n f n K g n m N N g n K n f n g n m N N 0 1 2.3.19 = 1 y n f n x n k y n hơn nữa, phƣơng trình của 1g n . cĩ thể đƣợc biểu diễn dƣới dạng : 1 1 1 2.3.20g n k g n y n tiếp theo, xét trƣờng hợp N=2, tƣơng ứng với cấu trúc nhƣ hình 2.3.10b Hình 2.3.10. Hệ thống dàn một và hai cực 1 x n f n + + 1z + + 1z + + 1z Thuận Ngƣợc Hồi tiếp Thuận Ngƣợc _ _ _ N N k k 1 1 k k 1g n 0f n y n 1 x n f n N N k k 1 1 k k N N k k 2 2 k k y n 0f n 1f n 1g n 0g n 51 Các phƣơng trình ứng với cấu trúc này là: 2 1 2 2 1 2 2 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 2.3.21 1 f n x n f n f n k g n g n k f n g n f n f n k g n g n k f n g n y n f n g n Sau một vài thay thế và xử lý ta cĩ: 1 2 21 1 2 2.3.22y n k k y n k y n x n 2 2 1 21 1 2 2.3.23g n k y n k k y n y n Rõ ràng phƣơng trình sai phân (2.3.22) biểu diễn bộ lọc số IIR hai cực và quan hệ (2.3.23) là phƣơng trình vào – ra của hệ IIR hai khơng. Nĩi chung, các kết luận trên đây là đúng với mọi N. Thật vậy, với định nghĩa 0 m m m F z F z A z X z F z , hàm truyền đạt của bộ lọc số IIR tồn cực là: 0 1 2.3.24a m m Y z F z H z X z F z A z tƣơng tự, hàm truyền đạt của bộ lọc số (FIR) tồn khơng là : 1 0 2.3.25 m m m b m m G z G z H z B z z A z Y z G z ở đây ta đã sử dụng các quan hệ đã thiết lập trƣớc đây là (2.3.23) và (2.3.25). Nhƣ vậy, các hệ số trong bH z của bộ lọc số FIR là đồng nhất với các hệ số trong mA z , trừ khi chúng xuất hiện theo thứ tự ngƣợc. Cấu trúc dàn tồn cực cĩ một tuyến tồn khơng với đầu vào 0g n . Và đầu ra Ng n , đa thức biểu diễn hàm truyền đạt của tuyến tồn khơng mB z chung cho cả hai cấu trúc dàn luơn luơn đƣợc gọi là hàm truyền đạt theo hƣớng ngƣợc lại, vì nĩ đảm bảo tuyến ngƣợc lại trong cấu trúc dàn tồn cực. Dàn tồn cực cung cấp khối cơ bản cho các cấu trúc loại dàn, thực hiện các bộ lọc số IIR chứa cả cực và khơng. Để triển khai một cấu trúc loại dàn, thực hiện các bộ lọc số IIR chứa cả cực và khơng, ta hãy nhận xét một hệ IIR với hàm truyền đạt: 52 0 1 2.3.26 1 M k M Mk N k N N k C k z C z H z A z a k z ở đây, ký hiệu của đa thức tử số đã đƣợc thay đổi để tránh sự lẫn lộn với việc triển khai trƣớc đây của ta. Khơng mất tính tổng quát, khi ta giả thiết N M Trong cấu trúc trực tiếp loại II, hệ thống (8.67) đƣợc mơ tả bằng phƣơng trình sai phân: 1 2.3.27 N N k n a k n k x n 0 2.3.28 M M k y n C k n k Hình 2.3.11. Cấu trúc trực tiếp loại II của bộ lọc IIR Chú ý rằng (2.3.27) Là quan hệ vào-ra của một bộ lọc số IIR tồn cực và (2.3.28) là vào ra của bộ lọc số tồn khơng. Hơn nữa, ta nhận thấy rằng, đầu ra của một hệ thống tồn khơng chính là liên hợp tuyến tính của các đầu ra đã trễ từ hệ thống tồn cực. Điều này dễ nhận thấy từ việc quan sát cấu trúc trực tiếp loại II nhƣ hình 2.3.12. Vì các khơng là kết quả của việc thực hiện liên hợp tuyến tính của các đầu ra trƣớc nên ta dùng nhận xét này để xây dựng bộ lọc số IIR tồn khơng khi lấy cấu trúc dàn tồn cực nhƣ khối cơ bản. Ta vừa xét rằng mg n là liên hợp tuyến tính của đầu ra hiện tại và quá khứ. Thật vậy, hệ thống: x n + + + + + + + + 1z 1z 1z 1z 1a 2a 2a 1Ma Ma n 1n 2n 1n M n M 0MC 1MC 2MC 1MC M MC M y n 53 m b m G z H z B z Y z là một hệ thống tồn khơng. Bởi vậy, liên hợp tuyến tính bất kỳ của mg n cũng là một hệ thống tồn khơng. Hình 2.3.12. Cấu trúc dàn thang của hệ thống cực khơng Nhƣ vậy, ta bắt đầu từ cấu trúc dàn tồn cực với các tham số mk ,1 m N và đã bổ xung thêm phần thang bằng cách đƣa ra một liên hợp tuyến tính cĩ trọng số của mg n , kết quả thu đƣợc là một hệ IIR tồn cực, cĩ cấu trúc dàn thang nhƣ hình 2.3.11. với M=N đầu ra của nĩ là: 0 2.3.29 M m m m y n g n ở đây m là tham số xác định các khơng của hệ thống. Hàm truyền đạt tƣơng ứng với 2.3.29 là 0 2.3.30 M m m m Y z G z H z X z X z Vì NX z F z và 0 0F z G z , ta cĩ thể viết 2.3.30 dƣới dạng Ng n 1z 1z 1z + + + + + + + + + + Đầu vào N x n f n _ N N k k 1Nf n 2f n 1f n 0f n N N k k 2 2 k k _ _ N N k k 1 1 k k 0g n 1g n 2g n 1Ng n Nv 1Nv 2v 1v 0v y n 54 0 0 0 0 M m m m N M m mM m m m m N N G z F z H z X z F z B z B z A z A z 2.3.31 Nếu so sánh 2.3.26 với 2.3.31 , ta cĩ thể kết luận 0 2.3.32 M M m m m C z B z đây là quan hệ cần tìm, nĩ cĩ thể đƣợc dùng để xác định các trọng số m , nhƣ vậy ta chứng minh đƣợc rằng các hệ số của đa thức tử số MC z xác định các tham số thang m , trong khi các hệ số của đa thức mẫu số NA z xác định tham số dàn mK . Các tham số thang xác định 2.3.30 Cĩ thể đƣợc biểu diễn nhƣ sau: 1 0 2.3.33 m m k k m m k C z B z B z hoặc tƣơng đƣơng 1 2.3.34m m m mC z C z B z Nhƣ vậy cĩ thể tính mC z mơt cách đệ quy từ đa thức nghịch đảo , 1,2,.........,mB z m N vì 1m m với mọi m, nên tham số , 1, 2,3,.....m m M cĩ thể đƣợc xác định trƣớc hết theo 1,2,....., 2.3.35m mC z m M và cho chạy ngƣợc lại quan hệ đệ quy này theo m (nghĩa là m=M,m=M- 1, 2) ta sẽ cĩ mC m và các tham số thang tƣơng ứng với 2.3.35 55 Chƣơng 3. MƠ PHỎNG THIẾT KẾ BỘ LỌC SỐ IIR Trong phần này em ứng dụng thiết kế và xây dựng cấu trúc một bộ lọc số IIR bằng MATLAB, với yêu cầu: - Bộ lọc thơng thấp cĩ tần số cắt 3.4kHz - Độ mấp mơ dải thơng 0.5dB - Độ suy giảm dải chắn 60dB - Độ rộng sƣờn 1% 3.1 THIẾT KẾ BỘ LỌC SỐ IIR TỪ BỘ LỌC TƢƠNG TỰ Từ những yêu cầu trên, ta tiến hành thiết kế, đầu tiên ta thiết kế bộ lọc tƣơng tự. Cĩ nhiều phƣơng pháp thiết kế bộ lọc tƣơng tự nhƣ Chebyshev, Butterworth, Ellip; ở đây em sử dụng bộ lọc Ellip. %Đoạn chƣơng trình MATLAB thiết kế bộ lọc tƣơng tự Ellip Fc=3400; %Tần số cắt Rp=0.5; %Độ mấp mơ dải thơng (theo dB) Rs=60; %Độ suy giảm dải chắn (theo dB) Wp=2*pi*Fc; Ws=1.01*Wp; %Độ rộng sƣờn Ws-Wp [N,Wn]=ellipord(Wp,Ws,Rp,Rs,'s'); %Tính bậc của bộ lọc [B,A]=ellip(N,Rp,Rs,Wn,'s'); %Hàm truyền Ha(s)=B(s)/A(s) Từ kết quả ta cĩ đặc tuyến truyền đạt sA sB sH a ,trong đĩ: B(s)=127.6 s 12 + 3.889.10 -9 s 11 + 5.974.10 11 s 10 +16.74 s 9 +1.054.10 21 s 8 +2.478.10 10 s 7 + 9.319.10 29 s 6 +1.688.10 19 s 5 + 4.437.10 38 s 4 +5.454.10 27 s 3 +1.091.10 47 s 2 + 6.789.10 35 s + 1.09e055 A(s)=s 13 +2.414.10 4 s 12 +2.411.10 9 s 11 +4.984.10 13 s 10 +2.369.10 18 s 9 +4.126.10 22 s 8 +1.209.10 27 s 7 +1.726.10 31 s 6 +3.354.10 35 s 5 +3.744.10 39 s 4 +4.75.10 43 s 3 +3.744.10 47 s 2 +2.627.10 51 s +1.09.10 55 56 Đặc tuyến tần số của Ha(s) nhƣ trong hình 3.1. -200 -150 -100 -50 0 M ag ni tu de ( dB ) 10 2 10 3 10 4 10 5 10 6 -360 0 360 720 P ha se ( de g) Bode Diagram Frequency (rad/sec) Hình 3.1. Đặc tuyến truyền đạt của bộ lọc tƣơng tự Tiếp theo ta chuyển từ bộ lọc tƣơng tự sang bộ lọc số, %Đoạn chƣơng trình biến đổi từ bộ lọc tƣơng tự sang bộ lọc số Fs=10000; %Tần số lấy mẫu [Bz,Az]=impinvar(B,A,Fs); %Hàm truyền H(Z)=Bz(Z)/Az(Z) ở trên ta sử dụng phƣơng pháp bất biến xung đƣợc ZAz ZBz ZH , với: Bz(Z)=0.004253-0.03618Z -1 +0.1577Z -2 -0.4505Z -3 +0.9286Z -4 -1.443Z -5 + 1.726Z -6 -1.599Z -7 +1.139Z -8 -0.6097Z -9 +0.2341Z -10 -0.05842Z -11 + 0.007336Z -12 Az(Z)=1-9.992Z -1 +48.04Z -2 -146.4Z -3 +314.9Z -4 -503.4Z -5 +614.7Z -6 -580Z -7 +422.7Z -8 -235Z -9 +96.88Z -10 -28.07Z -11 +5.129Z -12 -0.4473Z -13 Đặc tuyến tần số của H(ejω) nhƣ trong hình 3.2. 57 (a) (b) Hình 3.2. Đặc tuyến biên độ - tần số (a) và pha - tần số (b) của H(ejω) 58 Từ những thơng số thiết kế, ta xây dựng cấu trúc bộ lọc bằng simulink trong hình 3.3. Hình 3.3. Cấu trúc bộ lọc thơng thấp fc=3.4kHz Các kết quả mơ phỏng nhƣ trong hình 3.4. và hình 3.5. Hình 3.4. Phổ tín hiệu trƣớc và sau khi lọc (S1=1.5kHz; S2=4.5kHz) 59 Hình 3.5. Phổ tín hiệu trƣớc và sau khi lọc (S1=3.38kHz; S2=3.42kHz) 3.2. THIẾT KẾ BỘ LỌC SỐ IIR SỬ DỤNG FDATOOL CỦA MATLAB Cơng cụ FDATooL là cơng cụ phân tich và thiết kế mạch lọc của phần mềm MATLAB. Nĩ là giao diện đồ họa ngƣời dùng Graphical User Interface (GUI),cho phép thiết kế ,và phân tích nhanh chĩng tất cả các loại mạch lọc số cả IIR và FIR. FDATool giúp thiết kế và phân tích mạch lọc bằng cách đặt các qui định tối ƣu hay đặt trực tiếp các hệ số mạch lọc từ mơi trƣờng MATLAB. Nĩ cho ta thấy đáp ứng biên độ và pha của bộ lọc cần thiết kế. 3.2.1. Thiết kế bộ lọc số dụng thiết kế và xây dựng cấu trúc một bộ lọc số IIR, với yêu cầu: - Bộ lọc thơng thấp cĩ tần số cắt 3.4kHz - Độ mấp mơ dải thơng 0.5dB - Độ suy giảm dải chắn 60dB - Độ rộng sƣờn 1% Từ các yêu cầu trên ta cĩ thể sử dụng FDATool để thiết kế bơ lọc. Mở hộp cơng cụ FDATool bằng cách gõ lệnh fdatool từ cửa sổ Command Window của MATLAB 60 Hình 3.2.1 lệnh để mở hộp thoại FDATool Hộp thoại FDATool sẽ hiện ra Hình 3.2.2 Hộp thoại FDATool 61 Ta sẽ nhập các thơng số của bộ lọc vào Hình 3.2.3 Nhập thơng số bộ lọc số IIR thơng thấp elliptic cần thiết kế. Hộp cơng cụ sẽ trả về đáp ứng biên độ của bộ lọc cần thiết kế Hình 3.2.4 Đáp ứng biên độ của bộ lọc cần thiết kế Nhập thơng số Bộ loc thơng thấp Bộ loc loai Elliptic 62 Đáp ứng pha của bộ lọc Hình 3.2.5 Đáp ứng pha của bộ lọc cần thiết kế Chuyển sang simulink mơ phỏng bộ lọc cần thiết kế với cấu trúc chuyển vị trực tiếp loại II với tín hiệu đầu vào là S1=1.5khz, S2=3.38kHz,S3=3,42kHz. Hình 3.2.6 Mơ phỏng bộ loc cần thiết kế với cấu trúc chuyển vị trực tiếp loại II 63 Hình 3.2.7 Phổ tín hiệu trƣớc và sau khi lọc (S1=1.5kHz, S2=3.38kHz, S3= 3.42kHz) 64 KẾT LUẬN Qua các phần đã trình bày ở trên thì chúng ta cĩ thể nắm đƣợc các bƣớc cơ bản về phƣơng pháp thiết kế và tính tốn các hệ số thực tế của bộ lọc IIR. Nhƣ vậy qua đĩ ta cĩ thể nắm bắt đƣợc các thủ tục thiết kế một bộ lọc IIR cĩ các đặc điểm kỹ thuật cho trƣớc. Cuối cùng quan trọng nhất là ta cĩ thể thiết kế và thực hiện các bộ lọc số bằng chƣơng trình MATLAB nhƣ trong đề tài này viết và qua đĩ cĩ thể ứng dụng để thiết kế các bộ lọc bằng các phƣơng pháp khác. Với sự phát triển mạnh mẽ của khoa học kỹ thuật, các ngơn ngữ lập trình mạnh cĩ kèm theo hộp cơng cụ xử lý số tín hiệu nhƣ ngơn ngữ MATLAB thì việc phân tích và thiết kế các bộ lọc số ngày càng trở nên đơn giản (kể cả bộ lọc FIR và bộ lọc IIR) và độ chính xác của phép tốn sẽ tăng lên. Do điều kiện thời gian cĩ hạn cộng với khả năng cịn hạn chế nên chắc khơng tránh khỏi thiếu sĩt. Vậy rất mong đƣợc quý thầy cơ chỉ bảo để quyển đồ án này đƣợc hồn thiện. Em xin chân thành cám ơn thầy giáo ThS Nguyễn Văn Dƣơng đã tận tình giúp đỡ và tạo điều kiện để em hồn thành quyển đồ án này. 65 TÀI LIỆU THAM KHẢO 1.Nguyễn Quốc Trung(1999), Xử lý tín hiệu và lọc số (Tập1 và 2), Nhà xuất bản khoa học kỹ thuật. 2.Phạm Minh Hà(2002), Kỹ thuật mạch điện tử, Nhà xuất bản khoa học kỹ thuật. 3.Đặng Hồi Bắc(2006), Xử lý Tín Hiệu số, Học viện Cơng Nghệ Bƣu Chính Viễn Thơng. 4.Hồ Văn Sung(2008), Thực hành xử lý số tín hiệu Với MATLAB, Nhà xuất bản khoa học kỹ thuật. 5. John G. PROAKIS and Dimitris G. MANOLAKIS(1996) , DIGITAL SIGNAL PROCESSING Principles, Algorithms, and AplicationsThird Edition, PRENTICE HALL, New Jersey, USA. 66 MỤC LỤC LỜI MỞ ĐẦU .................................................................................................. 1 Chƣơng 1: BỘ LỌC SỐ ................................................................................ 11 1.1.HÀM HỆ THỐNG .................................................................................... 11 1.1.1. Hệ thống FIR ......................................................................................... 12 1.1.2. Hệ thống IIR .......................................................................................... 13 1.2. ĐẶC TUYẾN TẦN SỐ CỦA BỘ LỌC .................................................. 15 1.2.1. Đặc tuyến tần số của bộ lọc số lý tƣởng ............................................... 15 1.2.2. Đặc tuyến tần số bộ lọc thực tế .............................................................. 23 Chƣơng 2: THIẾT KẾ BỘ LỌC IIR ........................................................... 24 2.1 BỘ LỌC TƢƠNG TỰ ............................................................................... 24 2.1.1 Một số qui định đối với mạch lọc tƣơng tự ............................................. 24 2.1.2 Bộ lọc tƣơng tự Butterworth ................................................................... 27 2.1.3 Bộ lọc tƣơng tự Chebyshev ..................................................................... 28 2.1.4 Bộ lọc tƣơng tự Elip (Cauer) .................................................................. 31 2.2. TỔNG HỢP BỘ LỌC SỐ IIR .................................................................. 32 2.2.1 Cơ sở tổng hợp bộ lọc số IIR .................................................................. 33 2.2.2 Phƣơng pháp bất biến xung..................................................................... 34 2.2.3 Phƣơng pháp biến đổi song tuyến ........................................................... 37 2.2.4 Phƣơng pháp tƣơng đƣơng vi phân ......................................................... 38 2.2.5 Tổng hợp bộ lọc số IIR thơng cao, thơng dải và chắn dải bằng phép biến đổi dải tần. ....................................................................................................... 40 2.3. CẤU TRÚC BỘ LỌC IIR ........................................................................ 41 2.3.1Cấu trúc bộ lọc số IIR dạng trực tiếp ...................................................... 32 2.3.2 Cấu trúc bộ lọc số IIR dạng nối tiếp........................................................ 45 2.3.3Cấu trúc bộ lọc số IIR dạng song song .................................................... 46 2.3.4 Cấu trúc bộ lọc số IIR dạng dàn (mắt cáo) .............................................. 47 Chƣơng 3: MƠ PHỎNG THIẾT KẾ BỘ LỌC SỐ IIR ............................ 55 3.1 THIẾT KẾ BỘ LỌC SỐ IIR TỪ BỘ LỌC TƢƠNG TỰ ......................... 55 3.2. THIẾT KẾ BỘ LỌC SỐ IIR SỬ DỤNG FDATOOL CỦA MATLAB.. 59 KẾT LUẬN .................................................................................................... 63 TÀI LIỆU THAM KHẢO ............................................................................ 65

Các file đính kèm theo tài liệu này:

  • pdffile_goc_779560.pdf
Tài liệu liên quan
  • Luận văn Áp dụng dạy học tích cực để hình thành khái niệm địa lí kinh tế – Xã hội cho học sinh lớp 10 THPT ở tỉnh Bắc Kạn

    130 trang | Lượt xem: 1041 | Lượt tải: 0

  • E-Marketing - Chương 8: Kiểm tra và đánh giá chương trình Marketing thương mại điện tử

    33 trang | Lượt xem: 1547 | Lượt tải: 2

  • Dung dịch khoan - Xi măng

    119 trang | Lượt xem: 1615 | Lượt tải: 0

  • Tuyển tập các dạng bài tập ngân hàng thương mại

    37 trang | Lượt xem: 1238 | Lượt tải: 0

  • Đồ án Tính toán thi công, lắp đặt tuyến ống dẫn dầu RP2 – UBN3

    65 trang | Lượt xem: 1427 | Lượt tải: 0

  • Quản trị nguồn nhân lực - Chương 1: Giới thiệu về quản trị nguồn nhân lực

    44 trang | Lượt xem: 1194 | Lượt tải: 0

  • Khóa luận Xây dựng hệ thống hỗ trợ thi trắc nghiệm

    185 trang | Lượt xem: 2470 | Lượt tải: 0

  • Bài tập lớn Cơ học đất

    12 trang | Lượt xem: 2641 | Lượt tải: 1

  • Câu hỏi triết học Mác - Lênin

    133 trang | Lượt xem: 1350 | Lượt tải: 0

  • Giáo trình Thanh toán quốc tế - Chương 3: Các phương tiện thanh toán quốc tế

    52 trang | Lượt xem: 1771 | Lượt tải: 0

Copyright © 2024 ThuVienTaiLieu.vn - Tải luận văn tham khảo

ThuVienTaiLieu.vn on Facebook Follow @ThuVienTaiLieu.vn

Từ khóa » Thiết Kế Bộ Lọc Số Iir Bằng Matlab