Độc Lập Tuyến Tính – Wikipedia Tiếng Việt
Có thể bạn quan tâm
Bước tới nội dung
Lấy từ “https://vi.wikipedia.org/w/index.php?title=Độc_lập_tuyến_tính&oldid=66706855” Thể loại:
Nội dung
chuyển sang thanh bên ẩn- Đầu
- Bài viết
- Thảo luận
- Đọc
- Sửa đổi
- Sửa mã nguồn
- Xem lịch sử
- Đọc
- Sửa đổi
- Sửa mã nguồn
- Xem lịch sử
- Các liên kết đến đây
- Thay đổi liên quan
- Trang đặc biệt
- Liên kết thường trực
- Thông tin trang
- Trích dẫn trang này
- Lấy URL ngắn gọn
- Tải mã QR
- Tạo một quyển sách
- Tải dưới dạng PDF
- Bản để in ra
- Khoản mục Wikidata
Trong đại số tuyến tính, độc lập tuyến tính là một tính chất thể hiện mối liên hệ giữa các vectơ.
Độc lập tuyến tính và phụ thuộc tuyến tính
[sửa | sửa mã nguồn]- Một hệ các vectơ {v1,...,vn} trong không gian vectơ V được gọi là phụ thuộc tuyến tính,
nếu tồn tại các số: k1,..., kn không đồng thời bằng 0 sao cho:
k1 v1 +... + kn vn = 0.- hệ các vectơ là độc lập tuyến tính khi và chỉ khi phương trình vectơ:
chỉ có nghiệm duy nhất: k1 = k2 =... = kn = 0
Tính chất
[sửa | sửa mã nguồn]Cho V là không gian vectơ trên trường K:
Phụ thuộc tuyến tính | Độc lập tuyến tính |
---|---|
Mọi tập hợp chứa vectơ 0v đều phụ thuộc tuyến tính, tức là nếu 0v ∈ S thì S phụ thuộc tuyến tính. | Mọi tập hợp độc lập tuyến tính thì không chứa vectơ 0v, tức là nếu S là tập con độc lập tuyến tính của V thì 0vS. |
Mọi tập hợp chứa tập con phụ thuộc tuyến tính thì nó phụ thuộc tuyến tính, tức là nếu E F và E phụ thuộc tuyến tính thì F phụ thuộc tuyến tính. | Mọi tập con khác rỗng của một tập độc lập tuyến tính thì độc lập tuyến tính. Tức là ≠ E F và F độc lập tuyến tính thì E độc lập tuyến tính. |
Tập S={u1,u2,...,um} (m≥2) phụ thuộc tuyến tính khi và chỉ khi tồn tại vectơ ui ∈ S sao cho ui là tổ hợp tuyến tính của các vectơ còn lại trong S. | Tập S ≠ độc lập tuyến tính khi và chỉ khi mỗi vectơ bất kỳ u ∈ S đầu không thể là tổ hợp tuyến tính của các vectơ còn lại trong S. |
Mọi tập khác rỗng S V thì hoặc S độc lập tuyến tính hoặc S phụ thuộc tuyến tính. |
Ý nghĩa hình học
[sửa | sửa mã nguồn]- Trong không gian các vectơ trên mặt phẳng, hệ gồm hai vectơ là độc lập tuyến tính khi và chỉ khi chúng không cùng phương.
- Trong không gian các vectơ hình học 3 chiều, hệ ba vectơ là độc lập tuyến tính khi và chỉ khi chúng không đồng phẳng.
Ví dụ
[sửa | sửa mã nguồn]- Hai vectơ (1,2,3,4) và (-3,-6,-9,5) là độc lập tuyến tính.
- (1,2) và (-2,-4) không độc lập tuyến tính vì tồn tại λ1 = 1 và λ2 = 2 thỏa mãn λ1(-2,-4) + λ2(1,2) = 0.
Độc lập tuyến tính trong không gian n (hoặc n)
[sửa | sửa mã nguồn]- Trong không gian Rn một hệ gồm nhiều hơn n vectơ {v1,...,vm} luôn là phụ thuộc tuyến tính.
- Nếu hệ các vectơ {v1,...,vm} là độc lập tuyến tính trong không gian Rn, thì tập hợp tất cả các vectơ có dạng:
- Một hệ n vectơ {v1,...,vn} là độc lập tuyến tính trong không gian Rn, khi và chỉ khi ma trận lập thành từ các tọa độ của chúng có định thức khác không (det A ≠ 0).
- Một hệ n vectơ {v1,...,vn} là phụ thuộc tuyến tính trong không gian Rn, khi và chỉ khi ma trận lập thành từ các tọa độ của chúng có định thức bằng không (det A = 0).
Xem thêm
[sửa | sửa mã nguồn]- Cơ sở của không gian vectơ
- Đại số tuyến tính
Tham khảo
[sửa | sửa mã nguồn]
| ||
---|---|---|
Khái niệm cơ bản |
| |
Ma trận |
| |
Song tuyến tính |
| |
Đại số đa tuyến tính |
| |
Xây dựng không gian vectơ |
| |
Đại số tuyến tính số |
| |
|
Bài viết liên quan đến toán học này vẫn còn sơ khai. Bạn có thể giúp Wikipedia mở rộng nội dung để bài được hoàn chỉnh hơn.
|
- Sơ khai toán học
- Đại số tuyến tính
- Đại số trừu tượng
- Tất cả bài viết sơ khai
Từ khóa » Tìm M để Ma Trận độc Lập Tuyến Tính
-
Tìm M để Hệ 4 Vectơ độc Lập Tuyến Tính - Diễn đàn Toán Học
-
Độc Lập Tuyến Tính Và Phụ Thuộc Tuyến Tính - Đại Số Tuyến Tính - Vted
-
Tìm điều Kiện Cuả M để Hệ Vectơ Là Phụ Thuộc Tuyến Tính: {(-m;1
-
Độc Lập Tuyến Tính, Phụ Thuộc Tuyến Tính – Bài Tập & Lời Giải - TTnguyen
-
- Độc Lập Tuyến Tính Và Phụ Thuộc Tuyến Tính - Thầy - YouTube
-
Bài 2: Tổ Hợp Tuyến Tính, độc Lập Tuyến Tính Phụ Thuộc Tuyến Tính
-
[PDF] Bài Giảng Toán Cao Cấp PGS.TS Lê
-
[PDF] Bài Tập Ôn Tập Đại SỐ TUYẾN TÍNH- HỌC KÌ II NĂM - FITA-VNUA
-
Độc Lập Tuyến Tính Và Phụ Thuộc Tuyến Tính - Toán Cao Cấp - Tài Liệu Text
-
[PDF] KHÔNG GIAN VECTƠ CHƯƠNG 3 - Nguyenvantien0405
-
[PDF] (Bài Tập Dùng ôn Thi Trắc Nghiệm) MA TRẬN 1. Tính Hạng ... - Trivoviet
-
Độc Lập Tuyến Tính Và Phụ Thuộc Tuyến Tính - RootOnChair