(DOC) Văn Bản | Lan Phuong

Academia.eduAcademia.eduLog InSign Up
  • Log In
  • Sign Up
  • more
    • About
    • Press
    • Papers
    • Terms
    • Privacy
    • Copyright
    • We're Hiring!
    • Help Center
    • less

Outline

keyboard_arrow_downTitleFirst page of “Văn bản”Academia Logodownload

Download Free PDF

Download Free DOCXVăn bảnProfile image of lan phuonglan phuongvisibility

description

12 pages

descriptionSee full PDFdownloadDownload PDF bookmarkSave to LibraryshareShareclose

Sign up for access to the world's latest research

Sign up for freearrow_forwardcheckGet notified about relevant paperscheckSave papers to use in your researchcheckJoin the discussion with peerscheckTrack your impactSee full PDFdownloadDownload PDFLoading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

lan phuongDai Hoc Khxh Va Nhan Van, Graduate StudentaddFollowmailMessagePapers1Followers9View all papers from lan phuongarrow_forward

Related papers

Sở giáo dục và đào tạoThiện Nguyễn

2018

CHỨC NĂNG, NHIỆM VỤ, QUYỀN HẠN VA CƠ CẤU TỔ CHỨC SỞ GIAO DỤC VA ĐAO TẠO HA TĨNHĐiều 1. Vị tri va chức năng 1. Sở Giao dục va ...

downloadDownload free PDFView PDFchevron_rightPianeti tra le noteAngelo Adamo

2010

Quest'opera è protetta dalla legge sul diritto d'autore, e la sua riproduzione è ammessa solo ed esclusivamente nei limiti stabiliti dalla stessa. Le fotocopie per uso personale possono essere effettuate nei limiti del 15% di ciascun volume dietro pagamento alla SIAE del compenso previsto dall'art. 68, commi 4 e 5, della legge 22 aprile 1941 n. 633. Le riproduzioni per uso non personale e/o oltre il limite del 15% potranno avvenire solo a seguito di specifica autorizzazione rilasciata da AIDRO,

downloadDownload free PDFView PDFchevron_rightXây Dựng Mô Hình Phân Tán Cho Phân Lớp Khối Lượng Lớn Văn Bản Theo Chủ ĐHồ Trí

FAIR - NGHIÊN CỨU CƠ BẢN VÀ ỨNG DỤNG CÔNG NGHỆ THÔNG TIN - 2016

Sự xuất hiện của các trang mạng xã hội đã làm cho số lượng người sử dụng và lượng thông tin trao đổi trên mạng internet trở nên rất lớn và không ngừng gia tăng. Phần lớn người sử dụng mạng xã hội, blog thường bày tỏ một cách chân thật các kiến thức, ý kiến, quan điểm, cảm xúc… của chính mình. Việc phân tích chủ đề từ những trao đổi, tài liệu trên mạng xã hội nhằm nắm bắt, quản lý và trích xuất thông tin là vô cùng quan trọng và có ý nghĩa lớn trong giáo dục, kinh tế, chính trị, xã hội, tâm lý học... Tuy nhiên để có được những thông tin hữu ích chúng ta phải giải quyết các vấn đề phức tạp ở cả hai giai đoạn: thu thập dữ liệu từ các trang mạng xã hội và phân tích thông tin từ nguồn dữ liệu lớn. Thông thường bài toán phân tích thông tin, cụ thể là phân lớp bài viết theo chủ đề, là bài toán xử lý, phân loại văn bản truyền thống nhưng khi áp dụng cho dữ liệu mạng xã hội thì gặp phải khó khăn về dung lượng dữ liệu cần xử lý, có thể lên đến hàng TeraByte, ZettaByte. Để có thể lưu trữ và xử lý lượng dữ liệu này cần sử dụng các công nghệ tính toán phân tán Cluster Computing, trong đó phổ biến nhất là mô hình MapReduce.

downloadDownload free PDFView PDFchevron_rightBiểu Diễn Và Tính Toán Ước Lượng Giá Trị Ngôn Ngữ Trong Bài Toán Ra Quyết Định Đa Tiêu Chuẩn08.Trần Đình Khang

FAIR - NGHIÊN CỨU CƠ BẢN VÀ ỨNG DỤNG CÔNG NGHỆ THÔNG TIN - 2016

Trong bài toán ra quyết định đa tiêu chuẩn, có các tiêu chuẩn được đánh giá một cách chủ quan bởi con người, thường được lựa chọn trong một tập cho trước các giá trị số hoặc tập nhãn ngôn ngữ được sắp xếp. Nhưng cũng có trường hợp người đánh giá còn lưỡng lự trong việc chọn giá trị đánh giá trong tập các giá trị ngôn ngữ, mà chỉ đưa ra các ước lượng kiểu như "ít nhất là Si", "tốt hơn Si", "giữa Si và Sj", "nhỏ hơn Sj" … Bài báo đề xuất tiếp cận biểu diễn và tính toán với các giá trị như vậy trong bài toán ra quyết định. Từ khóa-Ước lượng giá trị ngôn ngữ, ra quyết định đa tiêu chuẩn, TOPSIS, HA-Topsis. I. GIỚI THIỆU Trong công việc cũng như trong cuộc sống, con người thường đối mặt với các tình huống cần đánh giá, sắp xếp hay lựa chọn ra quyết định trong tập các đối tượng hay phương án chọn để thỏa mãn mục tiêu cho trước, có thể mô hình hóa biểu diễn và xử lý trong bài toán ra quyết định đa tiêu chuẩn [1], trong đó, các phương án, đối tượng được đánh giá bởi nhiều tiêu chuẩn khác nhau. Việc chọn ra phương án phù hợp có ý nghĩa to lớn, nhưng không phải lúc nào cũng dễ dàng, bởi lẽ giữa hai phương án, có thể được đánh giá tốt hơn ở tiêu chuẩn này, nhưng lại kém hơn ở tiêu chuẩn khác. Các tiêu chuẩn thể hiện các ràng buộc, đánh giá, các thuộc tính, đặc trưng, độ đo,… về các đối tượng hay phương án chọn. Ví dụ, để lựa chọn sinh viên cấp học bổng, tập phương án là danh sách các sinh viên, các tiêu chuẩn là Điểm học tập, Điểm ngoại ngữ, Thư giới thiệu, Phỏng vấn,… Các bài toán ra quyết định đa tiêu chuẩn thường được biểu diễn dạng bảng với ma trận đánh giá các tiêu chuẩn cho các phương án. Có nhiều phương pháp cho bài toán ra quyết định, như Topsis, Electre, Promethee,… thường tiếp cận theo hướng so sánh mức độ hơn kém giữa các giá trị đánh giá và tích hợp thành giá trị chung.

downloadDownload free PDFView PDFchevron_rightPhân Cụm Mờ Với Trọng Số Mũ Ngôn Ngữ08.Trần Đình Khang

FAIR - NGHIÊN CỨU CƠ BẢN VÀ ỨNG DỤNG CÔNG NGHỆ THÔNG TIN 2015, 2016

TÓM TẮT-Bài báo này được thực hiện nhằm mục đích nghiên cứu tìm hiểu thuật toán phân cụm FCM và các ý tưởng cải tiến đã có; tiến hành phân tích và phát hiện những đặc điểm phù hợp trong thuật toán FCM có thể áp dụng được đại số gia tử-một lý thuyết sử dụng đại số trong việc biểu diễn giá trị của các biến ngôn ngữ. Từ đó, đề xuất một hướng cải tiến mới, đó là sử dụng lý thuyết đại số gia tử vào trọng số mũ của thuật toán FCM và sau cùng là xây dựng cài đặt một thuật toán phân cụm mờ sử dụng đại số gia tử để có thể áp dụng giải quyết bài toán phân cụm trong các ứng dụng thực tế.

downloadDownload free PDFView PDFchevron_right Academia
  • Explore
  • Papers
  • Topics
  • Features
  • Mentions
  • Analytics
  • PDF Packages
  • Advanced Search
  • Search Alerts
  • Journals
  • Academia.edu Journals
  • My submissions
  • Reviewer Hub
  • Why publish with us
  • Testimonials
  • Company
  • About
  • Careers
  • Press
  • Help Center
  • Terms
  • Privacy
  • Copyright
  • Content Policy
Academia580 California St., Suite 400San Francisco, CA, 94104© 2026 Academia. All rights reserved

Từ khóa » Ví Dụ Phương Thức Lặp Ngữ âm