Đường Cao (tam Giác) – Wikipedia Tiếng Việt

Trong hình học, đường cao (tiếng Anh: altitude) của một tam giác là đoạn thẳng kẻ từ một đỉnh và vuông góc với đường thẳng chứa cạnh đối diện. Cạnh đối diện này được gọi là đáy ứng với đường cao. Giao điểm của đường cao và đáy được gọi là chân của đường cao. Độ dài của đường cao là khoảng cách giữa đỉnh và đáy, và quá trình vẽ đường cao này được gọi là hạ vuông góc từ đỉnh đó. Đường cao là một trường hợp đặc biệt của phép chiếu.

Ba đường cao của một tam giác đồng quy tại trực tâm

Độ dài đường cao được sử dụng để tính diện tích của một tam giác: diện tích tam giác bằng nửa tích đường cao nhân với đáy. Vì vậy, đường cao dài nhất vuông góc luôn với cạnh ngắn nhất của tam giác. Các đường cao cũng liên quan đến các cạnh của tam giác qua các hàm lượng giác.

Độ dài đường cao thường được ký hiệu là chữ h (viết tắt cho từ tiếng Anh height; có nghĩa là "chiều cao") và thường viết xuống dưới là chữ đại diện cho độ dài của cạnh đường cao đó cắt. Ví dụ, đường cao vuông góc cạnh c sẽ được ký hiệu là h c {\displaystyle h_{c}} .

Trong một tam giác cân, đường cao kẻ từ đỉnh cân - đường trung tuyến ứng với cạnh đáy - đường phân giác kẻ từ góc ở đỉnh trùng nhau.

Trong một tam giác vuông, đường cao có đáy là một cạnh góc vuông trùng với cạnh góc vuông còn lại. Đường cao với đáy là cạnh huyền chia cạnh huyền thành hai đoạn có độ dài lần lượt là pq, ta có quan hệ:

h c = p q {\displaystyle h_{c}={\sqrt {pq}}} (định lý trung bình nhân)

Từ khóa » Tính Chất Của đường Cao Trong Tam Giác Nhọn