Đường Thẳng \(y=2\) Là Tiệm Cận Ngang Của đồ Thị Hàm Số Nào Trong ...

YOMEDIA NONE Đường thẳng \(y=2\) là tiệm cận ngang của đồ thị hàm số nào  trong các hàm số sau đây? ADMICRO
  • Câu hỏi:

    Đường thẳng \(y=2\) là tiệm cận ngang của đồ thị hàm số nào trong các hàm số sau đây?

    • A. \(y = \frac{{2x + 1}}{{x - 1}}.\)
    • B. \(y = \frac{{3x - 4}}{{x - 2}}.\)
    • C. \(y = \frac{{x + 1}}{{x - 2}}.\)
    • D. \(y = \frac{{ - x + 1}}{{ - 2x + 1}}.\)

    Lời giải tham khảo:

    Đáp án đúng: A

    Ta có \(\mathop {\lim }\limits_{x \to + \infty } \frac{{2x + 1}}{{x - 1}} = 2\) nên \(y=2\) là đường tiệm cận ngang của đồ thị hàm số

    Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
    ATNETWORK

Mã câu hỏi: 55519

Loại bài: Bài tập

Chủ đề :

Môn học: Toán Học

Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài

  • Đề thi thử THPT Quốc Gia năm 2019 môn Toán Trường THPT Chuyên Vĩnh Phúc lần 2

    50 câu hỏi | 90 phút Bắt đầu thi
YOMEDIA

Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng

CÂU HỎI KHÁC

  • Tìm giá trị cực tiểu \(y_{CT}\) của hàm số \(y =  - {x^3} + 3x - 4\).
  • Phương trình: \({\log _3}\left( {3x - 2} \right) = 3\) có nghiệm là
  • Đồ thị hàm số \(y = \frac{{x + 1}}{{\sqrt {4 - {x^2}} }}\) có bao nhiêu đường tiệm cận?
  • Một người mỗi tháng đều đặn gửi vào ngân hàng một khoản tiền T theo hình thức lãi kép với lãi suất 0,6% mỗi
  • Cho hàm số \(f\left( x \right) = \left\{ {\begin{array}{*{20}{l}}{\frac{{{x^{2016}} + x - 2}}{{\sqrt {2018x + 1}  - \sqrt {x + 2018} }}}&
  • Cho biểu thức \(P = \sqrt[3]{{x.\sqrt[4]{{{x^3}\sqrt x }}}}\), với \(x > 0.\) Mệnh đề nào dưới đây đúng ?
  • Có bao nhiêu giá trị nguyên của \(x\) để hàm số \(y = \left| {x - 1} \right| + \left| {x + 3} \right|\) đạt giá trị nhỏ nh�
  • Tính thể tích của khối lăng trụ tam giác đều có tất cả các cạnh bằng \(a\).
  • Đường cong trong hình dưới là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D d
  • Đường thẳng \(y=2\) là tiệm cận ngang của đồ thị hàm số nào  trong các hàm số sau đây?
  • Có bao nhiêu giá trị nguyên dương của tham số \(m\) để hàm số \(y = \left| {3{x^4} - 4{x^3} - 12{x^2} + m} \right|\) có 5 đi�
  • Biết rằng tập các giá trị của tham số \(m\) để phương trình \(\left( {m - 3} \right){9^x} + 2\left( {m + 1} \right){3^x} - m
  • Cho hình chóp S.ABC có \(SA = a,\,\,SB = 2a,\,\,SC = 4a\) và \(\widehat {ASB} = \widehat {BSC} = \widehat {CSA} = {60^0}.
  • Giá trị của biểu thức \(M = {\log _2}2 + {\log _2}4 + {\log _2}8 + ... + {\log _2}256\) bằng
  • Kí hiệu \(\max \left\{ {a;b} \right\}\) là số lớn nhất trong hai số \(a, b\) Tìm tập nghiệm S của bất phương trình \
  • Với \(a\) là số thực dương bất kì, mệnh đề nào dưới đây đúng?
  • Gọi M, N là hai điểm di động trên đồ thị (C) của hàm số \(y =  - {x^3} + 3{x^2} - x + 4\) sao cho tiế
  • Trong mặt phẳng với hệ tọa độ Oxy, cho điểm \(M( - 3;1)\) và đường tròn \(\left( C \right):{x^2} + {y^2} - 2x - 6y + 6 = 0\
  • Hình hộp chữ nhật có 3 kích thước đôi một khác nhau có bao nhiêu mặt phẳng đối xứng
  • Đường thẳng \(\Delta \) có phương trình \(y = 2x + 1\) cắt đồ thị của hàm số \(y = {x^3} - x + 3\) tại hai điểm A
  • Hàm số \(y = {x^4} - 2{x^{\rm{2}}} + 1\) nghịch biến trên các khoảng nào sau đây?
  • Giá trị lớn nhất của hàm số \(y = 2{x^3} + 3{x^2} - 12x + 2\) trên đoạn \(\left[ { - 1;2} \right]\) thuộc khoảng nào dưới
  • Cho hàm số \(y=f(x)\). Hàm số \(y=f(x)\) có đồ thị trên một khoảng K như hình vẽ bên.
  • Với \(n\) là số tự nhiên lớn hơn 2, đặt \({S_n} = \frac{1}{{C_3^3}} + \frac{1}{{C_4^3}} + \frac{1}{{C_5^4}} + ... + \frac{1}{{C_n^3}}\).
  • Tập nghiệm S của bất phương trình \({5^{x + 2}} < {\left( {\frac{1}{{25}}} \right)^{ - x}}\) là
  • Khối cầu bán kính \(R = 2a\) có thể tích là
  • Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng \(a\), góc giữa mặt bên và mặt đáy bằng \(60^0\).
  • Trong mặt phẳng với hệ tọa độ Oxy, cho  elip \(\left( E \right):\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1\).
  • Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc đoạn \(\left[ { - 2018;\,\,2018} \right]\) để phương trình\(\left
  • Cho hàm số \(y=f(x)\) có đồ thị \(f(x)\) như hình vẽHàm số \(y = f\left( {1 - x} \right) + \frac{{{x^2}}}{2} - x\) 
  • Tìm tất cả các giá trị tham số \(m\) để bất phương trình \(6x + \sqrt {\left( {2 + x} \right)\left( {8 - x} \right)}  \le {x^2
  • Tìm tập xác định D của hàm số \(y = {\left( {3{x^2} - 1} \right)^{\frac{1}{3}}}\).
  • Số cạnh của hình mười hai mặt đều là
  • Cho hình chóp tứ giác đều có góc giữa mặt bên và mặt đáy bằng \(60^0\).
  • Biết rằng phương trình \({{\rm{e}}^x} - {{\rm{e}}^{ - x}} = 2\cos ax\) (\(a\) là tham số) có 3 nghiệm thực phân biệt.
  • Cho khối nón có bán kính đáy \(r = \sqrt 3 \) và chiều cao \(h=4\). Tính thể tích V của khối nón đã cho.
  • Giá trị nhỏ nhất của hàm số \(y = \frac{{2\sin x + 3}}{{\sin x + 1}}\)trên \(\left[ {0;\frac{\pi }{2}} \right]\) là
  • Cho hình lăng trụ tam giác đều \(ABC.ABC\) có \(AB = a,\,\,AA = 2a.\) Tính khoảng cách giữa hai đường thẳng AB và AC
  • Trong mặt phẳng với hệ tọa độ Oxy giả sử điểm \(A(a;b)\) thuộc đường thẳng \(d:\,\,x - y - 3 = 0\) và cách \(\
  • Một hình trụ có bán kính đáy bằng \(r\) và có thiết diện qua trục là một hình vuông.
  • Gọi S là tập hợp tất cả các giá trị thực của tham số \(m\) sao cho giá trị lớn nhất của hàm số \(y = \left| {\fr
  • Cho \(a, b\) là các số thực dương thỏa mãn \(b>1\) và \(\sqrt a  \le b < a\) .
  • Một hình trụ có  độ dài đường cao bằng 3, các đường tròn đáy lần lượt là (O;1) và (O;1).
  • Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật OMNP với \(M\left( {0;10} \right),\,\,N\left( {100;10} \right),\,\,P\left( {100;0}
  • Tập xác định của \(y = \ln \left( { - {x^2} + 5x - 6} \right)\) là
  • Cho \(f\left( x \right) = x.{{\rm{e}}^{ - 3x}}\). Tập nghiệm của bất phương trình \(f\left( x \right) > 0\) là
  • Cho khối chóp S.ABCD có thể tích bằng \(2a^3\) và đáy ABCD là hình bình hành. Biết diện tích tam giác SAB bằng \(a^2\).
  • Đạo hàm của hàm số \(y = {{\rm{e}}^{1 - 2x}}\) là
  • Tập nghiệm của bất phương trình \(2{\log _2}\left( {x - 1} \right) \le {\log _2}\left( {5 - x} \right) + 1\) là
  • Có bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = \frac{1}{3}{x^3} - m{x^2} + 4x + 2\) đồng biến trên tập xá
ADSENSE ADMICRO Bộ đề thi nổi bật UREKA AANETWORK

XEM NHANH CHƯƠNG TRÌNH LỚP 12

Toán 12

Lý thuyết Toán 12

Giải bài tập SGK Toán 12

Giải BT sách nâng cao Toán 12

Trắc nghiệm Toán 12

Hình học 12 Chương 3

Ngữ văn 12

Lý thuyết Ngữ Văn 12

Soạn văn 12

Soạn văn 12 (ngắn gọn)

Văn mẫu 12

Soạn Ai đã đặt tên cho dòng sông

Tiếng Anh 12

Giải bài Tiếng Anh 12

Giải bài Tiếng Anh 12 (Mới)

Trắc nghiệm Tiếng Anh 12

Unit 9 Lớp 12 Deserts

Tiếng Anh 12 mới Unit 5

Vật lý 12

Lý thuyết Vật Lý 12

Giải bài tập SGK Vật Lý 12

Giải BT sách nâng cao Vật Lý 12

Trắc nghiệm Vật Lý 12

Ôn tập Vật lý 12 Chương 3

Hoá học 12

Lý thuyết Hóa 12

Giải bài tập SGK Hóa 12

Giải BT sách nâng cao Hóa 12

Trắc nghiệm Hóa 12

Hoá Học 12 Chương 5

Sinh học 12

Lý thuyết Sinh 12

Giải bài tập SGK Sinh 12

Giải BT sách nâng cao Sinh 12

Trắc nghiệm Sinh 12

Sinh Học 12 Chương 2 Tiến hóa

Lịch sử 12

Lý thuyết Lịch sử 12

Giải bài tập SGK Lịch sử 12

Trắc nghiệm Lịch sử 12

Lịch Sử 12 Chương 3 Lịch Sử VN

Địa lý 12

Lý thuyết Địa lý 12

Giải bài tập SGK Địa lý 12

Trắc nghiệm Địa lý 12

Địa Lý 12 VĐSD và BVTN

GDCD 12

Lý thuyết GDCD 12

Giải bài tập SGK GDCD 12

Trắc nghiệm GDCD 12

GDCD 12 Học kì 1

Công nghệ 12

Lý thuyết Công nghệ 12

Giải bài tập SGK Công nghệ 12

Trắc nghiệm Công nghệ 12

Công nghệ 12 Chương 3

Tin học 12

Lý thuyết Tin học 12

Giải bài tập SGK Tin học 12

Trắc nghiệm Tin học 12

Tin học 12 Chương 2

Cộng đồng

Hỏi đáp lớp 12

Tư liệu lớp 12

Xem nhiều nhất tuần

Video: Vợ nhặt của Kim Lân

Đề cương HK1 lớp 12

Video ôn thi THPT QG môn Toán

Video ôn thi THPT QG môn Văn

Video ôn thi THPT QG môn Sinh

Video ôn thi THPT QG môn Vật lý

Video ôn thi THPT QG Tiếng Anh

Video ôn thi THPT QG môn Hóa

Đất Nước- Nguyễn Khoa Điềm

Đàn ghi ta của Lor-ca

Tây Tiến

Ai đã đặt tên cho dòng sông

Quá trình văn học và phong cách văn học

Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX

Người lái đò sông Đà

YOMEDIA YOMEDIA ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Bỏ qua Đăng nhập ×

Thông báo

Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.

Đồng ý ATNETWORK ON zunia.vn QC Bỏ qua >>

Từ khóa » đường Thẳng Y=2 Là Tiệm Cận Ngang Của đồ Thị Hàm Số Nào Sau đây