Electrochemical Oxidative N-H/P-H Cross-coupling With H 2 Evolution ...

Full text links CiteDisplay options Display options Format AbstractPubMedPMID

Abstract

Tertiary phosphines(iii) find widespread use in many aspects of synthetic organic chemistry. Herein, we developed a facile and novel electrochemical oxidative N-H/P-H cross-coupling method, leading to a series of expected tertiary phosphines(iii) under mild conditions with excellent yields. It is worth noting that this electrochemical protocol features very good reaction selectivity, where only a 1 : 1 ratio of amine and phosphine was required in the reaction. Moreover, this electrochemical protocol proved to be practical and scalable. Mechanistic insights suggested that the P radical was involved in this reaction.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1

Scheme 1. Important surrogates of P III …

Scheme 1. Important surrogates of P III groups. (A) P III ligands; (B) P III …

Scheme 1. Important surrogates of PIII groups. (A) PIII ligands; (B) PIII chelation-assisted C–H functionalization.
Scheme 2

Scheme 2. Gram-scale synthesis.

Scheme 2. Gram-scale synthesis.

Scheme 2. Gram-scale synthesis.
Fig. 1

Fig. 1. Electron paramagnetic resonance (EPR) spectra.

Fig. 1. Electron paramagnetic resonance (EPR) spectra.

Fig. 1. Electron paramagnetic resonance (EPR) spectra.
Scheme 3

Scheme 3. Control experiments.

Scheme 3. Control experiments.

Scheme 3. Control experiments.
Scheme 4

Scheme 4. Proposed mechanism.

Scheme 4. Proposed mechanism.

Scheme 4. Proposed mechanism.
See this image and copyright information in PMC

References

    1. Dunn N. L. Ha M. Radosevich A. T. J. Am. Chem. Soc. 2012;134:11330–11333. doi: 10.1021/ja302963p. - DOI - PubMed
    2. Dmitriev M. E. Ragulin V. V. Russ. J. Gen. Chem. 2011;81:1786. doi: 10.1134/S107036321109009X. - DOI
    3. Hassanabadi A. Mosslemin M. H. Abyar E. Taleb-Malamiri M. J. Chem. Res. 2012;36:497–499. doi: 10.3184/174751912X13403013285904. - DOI
    1. Wang D.-Y. Hu X.-P. Deng J. Yu S.-B. Duan Z.-C. Zheng Z. J. Org. Chem. 2008;73:2011–2014. doi: 10.1021/jo702488j. - DOI - PubMed
    2. Gross T. Chou S. Dyke A. Dominguez B. Groarke M. Medlock J. Ouellette M. Reddy J. P. Seger A. Zook S. Zanotti-Gerosa A. Tetrahedron Lett. 2012;53:1025–1028. doi: 10.1016/j.tetlet.2011.12.038. - DOI
    3. Donets P. A. Cramer N. J. Am. Chem. Soc. 2013;135:11772–11775. doi: 10.1021/ja406730t. - DOI - PubMed
    4. Schlatzer T. Breinbauer R. Adv. Synth. Catal. 2021;363:668–687. doi: 10.1002/adsc.202001278. - DOI - PMC - PubMed
    5. You C. Li S. Li X. Lv H. Zhang X. ACS Catal. 2019;9:8529–8533. doi: 10.1021/acscatal.9b02667. - DOI
    6. Boaz N. W. Mackenzie E. B. Debenham S. D. Large S. E. Ponasik Jr J. A. J. Org. Chem. 2005;70:1872–1880. doi: 10.1021/jo048312y. - DOI - PubMed
    1. Wang D. Chen X. Wong J. J. Jin L. Li M. Zhao Y. Houk K. N. Shi Z. Nat. Commun. 2021;12:524. doi: 10.1038/s41467-020-20531-3. - DOI - PMC - PubMed
    2. Borah A. J. Shi Z. J. Am. Chem. Soc. 2018;140:6062–6066. doi: 10.1021/jacs.8b03560. - DOI - PubMed
    3. Qiu X. Wang P. Wang D. Wang M. Yuan Y. Shi Z. Angew. Chem., Int. Ed. 2019;58:1504–1508. doi: 10.1002/anie.201813182. - DOI - PubMed
    4. Wen J. Wang D. Qian J. Wang D. Zhu C. Zhao Y. Shi Z. Angew. Chem., Int. Ed. 2019;58:2078–2082. doi: 10.1002/anie.201813452. - DOI - PubMed
    1. Broomfield L. M. Wu Y. Martin E. Shafir A. Adv. Synth. Catal. 2015;357:3538–3548. doi: 10.1002/adsc.201500562. - DOI
    2. Kenny N. P. Rajendran K. V. Jennings E. V. Gilheany D. G. Chem.–Eur. J. 2013;19:14210–14214. doi: 10.1002/chem.201302907. - DOI - PubMed
    1. Yu E. G. N. Veits A. Vinogradova O. S. Russ. J. Gen. Chem. 2005;75:1060–31068. doi: 10.1007/s11176-005-0368-x. - DOI
Show all 14 references

LinkOut - more resources

  • Full Text Sources

    • Europe PubMed Central
    • PubMed Central
    • Royal Society of Chemistry

Từ khóa » N H Fxph