Energy Barriers For The Addition Of H, *CH3, And *C2H5 To ... - PubMed

Clipboard, Search History, and several other advanced features are temporarily unavailable. Skip to main page content Dot gov

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation pubmed logo Search: Search Advanced Clipboard User Guide Save Email Send to
  • Clipboard
  • My Bibliography
  • Collections
  • Citation manager
Display options Display options Format Abstract PubMed PMID

Save citation to file

Format: Summary (text) PubMed PMID Abstract (text) CSV Create file Cancel

Email citation

Email address has not been verified. Go to My NCBI account settings to confirm your email and then refresh this page. To: Subject: Body: Format: Summary Summary (text) Abstract Abstract (text) MeSH and other data Send email Cancel

Add to Collections

  • Create a new collection
  • Add to an existing collection
Name your collection: Name must be less than 100 characters Choose a collection: Unable to load your collection due to an error Please try again Add Cancel

Add to My Bibliography

  • My Bibliography
Unable to load your delegates due to an error Please try again Add Cancel

Your saved search

Name of saved search: Search terms: Test search terms Would you like email updates of new search results? Saved Search Alert Radio Buttons
  • Yes
  • No
Email: (change) Frequency: Monthly Weekly Daily Which day? The first Sunday The first Monday The first Tuesday The first Wednesday The first Thursday The first Friday The first Saturday The first day The first weekday Which day? Sunday Monday Tuesday Wednesday Thursday Friday Saturday Report format: Summary Summary (text) Abstract Abstract (text) PubMed Send at most: 1 item 5 items 10 items 20 items 50 items 100 items 200 items Send even when there aren't any new results Optional text in email: Save Cancel

Create a file for external citation management software

Create file Cancel

Your RSS Feed

Name of RSS Feed: Number of items displayed: 5 10 15 20 50 100 Create RSS Cancel RSS Link Copy

Full text links

American Chemical Society full text link American Chemical Society Full text links

Actions

CiteCollectionsAdd to Collections
  • Create a new collection
  • Add to an existing collection
Name your collection: Name must be less than 100 characters Choose a collection: Unable to load your collection due to an errorPlease try again Add Cancel PermalinkPermalinkCopyDisplay options Display options Format AbstractPubMedPMID

Page navigation

  • Title & authors
  • Abstract
  • Publication types
  • MeSH terms
  • Substances
  • LinkOut - more resources
Title & authors Abstract Publication types MeSH terms Substances LinkOut - more resources Full text links CiteDisplay options Display options Format AbstractPubMedPMID

Abstract

Although enols have been identified in alcohol and other flames and in interstellar space and have been implicated in the formation of carboxylic acids in the urban troposphere in the past few years, the reactions that give rise to them are virtually unknown. To address this data deficit, particularly with regard to biobutanol combustion, we have carried out a number of ab initio calculations with the multilevel methods CBS-QB3 and CBS-APNO to determine the activation enthalpies for methyl addition to the CH(2) group of CH(2)=CHX where X = H, OH, and CH(3). These average at 26.3 +/- 1.0 kJ mol(-1) and are not influenced by the nature of X; addition to the CHX end is energetically costlier and does show the influence of group X = OH and CH(3). Replacing the attacking methyl radical by ethyl makes very little difference to addition at CH(2) and follows the same trend of a higher barrier for addition to the CH(OH) end. In the case of H-addition it is more problematic to draw general conclusions since the DFT-based methodology, CBS-QB3, struggles to locate transition states for some reactions. However, the increase in barrier heights in reaction at the CHX end in comparison to addition at the methylene end is evident. For hydrogen atom reaction with the carbonyl group in the compounds methanal, ethanal, propanal, and butanal we see that for addition at the O-center the barrier heights of ca. 38 kJ mol(-1) are not influenced by the nature of the alkyl group whereas addition at the C-center is different on going from H --> alkyl but seems to be invariant at 20 kJ mol(-1) once alkylated. Rate constants for H-atom elimination from 1-hydroxyethyl, 1-hydroxypropyl, and 1-hydroxybutyl radicals, valid over the range 800-2000 K, are reported. These demonstrate that enols are more prevalent than previously suspected and that 1-buten-1-ol should be almost as abundant as its isomeric aldehyde 1-butanal during the combustion of 1-butanol and that this will also be the case for other alcohols provided that the appropriate structural features are present. Since the toxicity of enols is not known experiments and further theoretical studies are clearly desirable before the large-scale usage of alcohol biofuels commences. An enthalpy of formation for butanal of Delta(f)H(298.15 K) = -204.4 +/- 1.4 kJ mol(-1) [Buckley, E.; Cox, J. D. Trans. Faraday Soc. 1967, 63 , 895 901] is recommended, the uncertainty surrounding that for the 2-hydroxypropyl radical has been markedly reduced, and new values for 1-buten-1-ol, 1-propen-1-ol, and 2-propen-2-ol of -171.8 +/- 1.6, -151.8 +/- 1.7, and -169.9 +/- 1.5 kJ mol(-1), respectively, are proposed.

PubMed Disclaimer

Publication types

  • Research Support, Non-U.S. Gov't Actions
    • Search in PubMed
    • Search in MeSH
    • Add to Search

MeSH terms

  • Aldehydes / chemistry* Actions
    • Search in PubMed
    • Search in MeSH
    • Add to Search
  • Ethane / chemistry* Actions
    • Search in PubMed
    • Search in MeSH
    • Add to Search
  • Ethylenes / chemistry* Actions
    • Search in PubMed
    • Search in MeSH
    • Add to Search
  • Hydrogen / chemistry* Actions
    • Search in PubMed
    • Search in MeSH
    • Add to Search
  • Methane / chemistry* Actions
    • Search in PubMed
    • Search in MeSH
    • Add to Search
  • Reproducibility of Results Actions
    • Search in PubMed
    • Search in MeSH
    • Add to Search
  • Thermodynamics Actions
    • Search in PubMed
    • Search in MeSH
    • Add to Search

Substances

  • Aldehydes Actions
    • Search in PubMed
    • Search in MeSH
    • Add to Search
  • Ethylenes Actions
    • Search in PubMed
    • Search in MeSH
    • Add to Search
  • Hydrogen Actions
    • Search in PubMed
    • Search in MeSH
    • Add to Search
  • ethylene Actions
    • Search in PubMed
    • Search in MeSH
    • Add to Search
  • Ethane Actions
    • Search in PubMed
    • Search in MeSH
    • Add to Search
  • Methane Actions
    • Search in PubMed
    • Search in MeSH
    • Add to Search

LinkOut - more resources

  • Full Text Sources

    • American Chemical Society
  • Miscellaneous

    • NCI CPTAC Assay Portal
Full text links [x] American Chemical Society full text link American Chemical Society [x] Cite Copy Download .nbib .nbib Format: AMA APA MLA NLM Send To
  • Clipboard
  • Email
  • Save
  • My Bibliography
  • Collections
  • Citation Manager
[x]

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Từ khóa » C3h7-o-c2h5