Selected ATcT [1, 2] enthalpy of formation based on version 1.122 of the Thermochemical Network [3] This version of ATcT results was partially described in Ruscic et al. [4], and was also used for the initial development of high-accuracy ANLn composite electronic structure methods [5]. |
Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | Ethanol | CH3CH2OH (g) | | -216.89 | -234.61 | ± 0.21 | kJ/mol | 46.0684 ±0.0017 | 64-17-5*0 | |
Representative Geometry of CH3CH2OH (g) |
spin ON spin OFF |
Top contributors to the provenance of ΔfH° of CH3CH2OH (g)The 20 contributors listed below account only for 71.3% of the provenance of ΔfH° of CH3CH2OH (g). A total of 221 contributors would be needed to account for 90% of the provenance. Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network. |
Contribution (%) | TNID | Reaction | Measured Quantity | Reference | 45.5 | 2665.2 | CH3CH2OH (l) + 3 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(303.15 K) = -1367.06 ± 0.26 kJ/mol | Chao 1965, mw conversion | 7.2 | 2762.1 | CH3CHO (g) + H2 (g) → CH3CH2OH (g)  | ΔrH°(355.15 K) = -16.752 ± 0.100 kcal/mol | Dolliver 1938, note unc | 6.4 | 2662.1 | CH3CH2OH (g) + 3 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(305.65 K) = -1408.03 ± 0.40 (×1.756) kJ/mol | Rossini 1932a, Rossini 1934a, note old units, mw conversion | 4.3 | 117.2 | 1/2 O2 (g) + H2 (g) → H2O (cr,l)  | ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/mol | Rossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930 | 2.2 | 2655.13 | CH3CH2OH (g) → 2 C (g) + O (g) + 6 H (g)  | ΔrH°(0 K) = 760.68 ± 0.30 kcal/mol | Karton 2011 | 0.6 | 2655.12 | CH3CH2OH (g) → 2 C (g) + O (g) + 6 H (g)  | ΔrH°(0 K) = 760.75 ± 0.56 kcal/mol | Karton 2011 | 0.5 | 1642.1 | 2 H2 (g) + C (graphite) → CH4 (g)  | ΔrG°(1165 K) = 37.521 ± 0.068 kJ/mol | Smith 1946, note COf, 3rd Law | 0.4 | 1519.7 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/mol | Hawtin 1966, note CO2e | 0.3 | 1641.4 | CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -890.61 ± 0.21 kJ/mol | Dale 2002 | 0.3 | 2941.6 | CH2(OH)2 (g, conrot gauche) + CH3CH2CH3 (g) → 2 CH3CH2OH (g)  | ΔrH°(0 K) = 6.71 ± 1.0 kcal/mol | Ruscic CBS-n | 0.3 | 2755.11 | CH3CHO (g) → 2 C (g) + O (g) + 4 H (g)  | ΔrH°(0 K) = 642.58 ± 0.30 kcal/mol | Karton 2011 | 0.3 | 2945.6 | CH2(OH)2 (g, disrot gauche) + CH3CH2CH3 (g) → 2 CH3CH2OH (g)  | ΔrH°(0 K) = 4.38 ± 1.0 kcal/mol | Ruscic CBS-n | 0.3 | 2655.8 | CH3CH2OH (g) → 2 C (g) + O (g) + 6 H (g)  | ΔrH°(0 K) = 760.83 ± 0.80 kcal/mol | Matus 2007 | 0.3 | 2941.3 | CH2(OH)2 (g, conrot gauche) + CH3CH2CH3 (g) → 2 CH3CH2OH (g)  | ΔrH°(0 K) = 6.45 ± 1.1 kcal/mol | Ruscic G3X | 0.2 | 1565.2 | CO (g) → C+ (g) + O (g)  | ΔrH°(0 K) = 22.3713 ± 0.0015 eV | Ng 2007 | 0.2 | 2945.3 | CH2(OH)2 (g, disrot gauche) + CH3CH2CH3 (g) → 2 CH3CH2OH (g)  | ΔrH°(0 K) = 3.56 ± 1.1 kcal/mol | Ruscic G3X | 0.2 | 2676.7 | [CH3CHOH]+ (g, anti) → 2 C (g) + 5 H (g) + O (g)  | ΔrH°(0 K) = 511.38 ± 0.80 kcal/mol | Matus 2007, Matus 2006 | 0.2 | 1641.6 | CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -890.44 ± 0.26 kJ/mol | GOMB Ref Calorimeter, Alexandrov 2002 | 0.2 | 2941.1 | CH2(OH)2 (g, conrot gauche) + CH3CH2CH3 (g) → 2 CH3CH2OH (g)  | ΔrH°(0 K) = 6.45 ± 1.2 kcal/mol | Ruscic G3B3 | 0.2 | 2941.2 | CH2(OH)2 (g, conrot gauche) + CH3CH2CH3 (g) → 2 CH3CH2OH (g)  | ΔrH°(0 K) = 6.51 ± 1.2 kcal/mol | Ruscic G3 | |
Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3CH2OH (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species. |
Correlation Coefficent(%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 98.6 | Ethanol | CH3CH2OH (l) | | -269.31 | -277.07 | ± 0.21 | kJ/mol | 46.0684 ±0.0017 | 64-17-5*500 | 50.7 | 1-Hydroxyethylium | [CH3CHOH]+ (g) | | 609.14 | 594.72 | ± 0.39 | kJ/mol | 45.0600 ±0.0017 | 18682-96-7*0 | 50.7 | 1-Hydroxyethylium | [CH3CHOH]+ (g, anti) | | 609.14 | 594.72 | ± 0.39 | kJ/mol | 45.0600 ±0.0017 | 18682-96-7*1 | 33.8 | Acetaldehyde | CH3CHO (g) | | -154.97 | -165.45 | ± 0.28 | kJ/mol | 44.0526 ±0.0017 | 75-07-0*0 | 33.4 | Acetaldehyde cation | [CH3CHO]+ (g) | | 832.02 | 822.04 | ± 0.29 | kJ/mol | 44.0520 ±0.0017 | 36505-03-0*0 | 33.3 | Ethoxy | CH3CH2O (g) | | 1.16 | -12.26 | ± 0.51 | kJ/mol | 45.0605 ±0.0017 | 2154-50-9*0 | 33.3 | Ethoxy | CH3CH2O (g, X 2A") | | 1.16 | -12.74 | ± 0.51 | kJ/mol | 45.0605 ±0.0017 | 2154-50-9*51 | 33.1 | Ethoxy | CH3CH2O (g, A 2A') | | 5.41 | -9.02 | ± 0.52 | kJ/mol | 45.0605 ±0.0017 | 2154-50-9*52 | 33.0 | Ethoxide | [CH3CH2O]- (g) | | -164.11 | -179.05 | ± 0.52 | kJ/mol | 45.0610 ±0.0017 | 16331-64-9*0 | 31.7 | Water | H2O (cr,l) | | -286.300 | -285.828 | ± 0.027 | kJ/mol | 18.01528 ±0.00033 | 7732-18-5*500 | |
Most Influential reactions involving CH3CH2OH (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences. |
InfluenceCoefficient | TNID | Reaction | Measured Quantity | Reference | 0.473 | 2684.1 | CH3CH2OH (g) → [CH3CHOH]+ (g) + H (g)  | ΔrH°(0 K) = 10.801 ± 0.005 eV | Ruscic 1994c | 0.466 | 2762.1 | CH3CHO (g) + H2 (g) → CH3CH2OH (g)  | ΔrH°(355.15 K) = -16.752 ± 0.100 kcal/mol | Dolliver 1938, note unc | 0.341 | 2687.1 | CH3OH (g) + [CH3CHOH]+ (g) → CH3CH2OH (g) + [CH2OH]+ (g)  | ΔrH°(0 K) = 0.848 ± 0.006 eV | Ruscic 1993, Ruscic 1994c | 0.243 | 2664.4 | CH3CH2OH (l) → CH3CH2OH (g)  | ΔrH°(298.15 K) = 42.43 ± 0.07 kJ/mol | Polak 1971, note unc | 0.243 | 2664.9 | CH3CH2OH (l) → CH3CH2OH (g)  | ΔrH°(320.03 K) = 41.36 ± 0.07 kJ/mol | Counsell 1970, note unc | 0.179 | 2659.7 | CH3CH2OH (g) + [CH3OH]+ (g) → [CH3CH2OH]+ (g) + CH3OH (g)  | ΔrH°(0 K) = -0.479 ± 0.036 eV | Ruscic W1RO, Bodi 2012 | 0.144 | 2657.8 | CH3CH2OH (g) → [CH3CH2OH]+ (g)  | ΔrH°(0 K) = 10.407 ± 0.040 eV | Ruscic W1RO | 0.131 | 2752.1 | [CH3CH2O]- (g) + H2O (g) → CH3CH2OH (g) + [OH]- (g)  | ΔrH°(0 K) = 0.502 ± 0.004 (×3.513) eV | DeTuri 1999, Ervin 2002 | 0.119 | 2664.6 | CH3CH2OH (l) → CH3CH2OH (g)  | ΔrH°(298.15 K) = 42.54 ± 0.10 kJ/mol | Fiock 1931, Rossini 1932a, Rossini 1934a, Green 1961 | 0.114 | 2664.3 | CH3CH2OH (l) → CH3CH2OH (g)  | ΔrH°(298.15 K) = 42.523 ± 0.102 kJ/mol | ThermoData 2004 | 0.098 | 2664.1 | CH3CH2OH (l) → CH3CH2OH (g)  | ΔrH°(298.15 K) = 42.46 ± 0.11 kJ/mol | Majer 1985 | 0.089 | 2721.7 | CH3CH2OH (g) + CH2OH (g) → CH2CH2OH (g, gauche-syn) + CH3OH (g)  | ΔrH°(0 K) = 5.53 ± 0.50 kcal/mol | Matus 2007, est unc | 0.088 | 2672.7 | CH3CH2OH (g) + CH2OH (g) → CH3CHOH (g, gauche-anti) + CH3OH (g)  | ΔrH°(0 K) = -1.15 ± 0.5 kcal/mol | Matus 2007, est unc | 0.078 | 2722.7 | CH3CH2OH (g) + CH3 (g) → CH2CH2OH (g, gauche-syn) + CH4 (g)  | ΔrH°(0 K) = -2.8 ± 0.5 kcal/mol | Matus 2007, est unc | 0.077 | 2753.1 | CH3CH2OH (g) + F- (g) → [CH3CH2O]- (g) + HF (g)  | ΔrH°(0 K) = 0.303 ± 0.005 (×3.668) eV | DeTuri 1999, Ervin 2002 | 0.076 | 2662.1 | CH3CH2OH (g) + 3 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(305.65 K) = -1408.03 ± 0.40 (×1.756) kJ/mol | Rossini 1932a, Rossini 1934a, note old units, mw conversion | 0.075 | 2664.7 | CH3CH2OH (l) → CH3CH2OH (g)  | ΔrH°(298.15 K) = 10.15 ± 0.03 kcal/mol | Wadso 1966a | 0.066 | 2741.1 | CH3CH2OH (g) + CH3O (g) → CH3OH (g) + CH3CH2O (g, A 2A')  | ΔrH°(0 K) = 0.92 ± 0.50 kcal/mol | Matus 2007, est unc | 0.065 | 2740.6 | CH3CH2OH (g) + CH3O (g) → CH3OH (g) + CH3CH2O (g, X 2A")  | ΔrH°(0 K) = -0.19 ± 0.50 kcal/mol | Matus 2007, est unc | 0.064 | 3875.6 | FCH2CH2OH (g) + CH4 (g) → CH3CH2OH (g) + CH3F (g)  | ΔrH°(0 K) = 6.42 ± 1.0 kcal/mol | Ruscic CBS-n | |
References |
1 | B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner, Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited. J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y] | 2 | B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner, Active Thermochemical Tables: Thermochemistry for the 21st Century. J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078] | 3 | B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122 of the Thermochemical Network (2016); available at ATcT.anl.gov | 4 | B. Ruscic, Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry. J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346] | 5 | S. J. Klippenstein, L. B. Harding, and B. Ruscic, Ab initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species. J. Phys. Chem. A 121, 6580-6602 (2017) [DOI: 10.1021/acs.jpca.7b05945] | 6 | B. Ruscic, Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables. Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605] | |
Formula |
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc. |
Uncertainties |
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]). Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol. |
Website Functionality Credits |
The reorganization of the website was developed and implemented by David H. Bross (ANL). The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN. The molecule images are rendered by Indigo-depict. The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/. |
Acknowledgement |
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357. |