F(x) Là Một Nguyên Hàm Của Hàm Số \(y = X{e^{{x^2 ... - Hoc247
Có thể bạn quan tâm
- Câu hỏi:
F(x) là một nguyên hàm của hàm số \(y = x{e^{{x^2}}}.\) Hàm số nào sau đây không phải là F(x)?
- A. \(F\left( x \right) = \frac{1}{2}{e^{{x^2}}} + 2\)
- B. \(F\left( x \right) = \frac{1}{2}\left( {{e^{{x^2}}} + 5} \right)\)
- C. \(F\left( x \right) = - \frac{1}{2}{e^{{x^2}}} + C\)
- D. \(F\left( x \right) = - \frac{1}{2}\left( {2 - {e^{{x^2}}}} \right)\)
Lời giải tham khảo:
Đáp án đúng: C
Hãy suy nghĩ và trả lời câu hỏi trước khi HOC247 cung cấp đáp án và lời giải
ATNETWORK
Mã câu hỏi: 57614
Loại bài: Bài tập
Chủ đề :
Môn học: Toán Học
Câu hỏi này thuộc đề thi trắc nghiệm dưới đây, bấm vào Bắt đầu thi để làm toàn bài
-
Đề thi HK2 môn Toán 12 Trường THPT Đoàn Thượng - Hải Dương năm học 2017 - 2018
50 câu hỏi | 90 phút Bắt đầu thi
YOMEDIA Hướng dẫn Trắc nghiệm Online và Tích lũy điểm thưởng
CÂU HỎI KHÁC
- F(x) là một nguyên hàm của hàm số \(y = x{e^{{x^2}}}.\) Hàm số nào sau đây không phải là F(x)?
- Tìm nguyên hàm của hàm số \(f\left( x \right) = 7{x^5}\)
- Tính nguyên hàm \(\int {\left( {\frac{1}{{2x + 3}}} \right){\rm{d}}x} .\)
- Cho f(x), g(x) là các hàm số xác định và liên tục trên R. Trong các mệnh đề sau, mệnh đề nào sai?
- Cho hàm số f(x) thỏa mãn các điều kiện \(f \left( x \right) = 2 + \cos 2x\) và \(f\left( {\frac{\pi }{2}} \right) = 2\pi \).
- Cho f(x), g(x) là hai hàm số liên tục trên R. Chọn mệnh đề sai trong các mệnh đề sau:
- Tính tích phân \(I = 2\int\limits_0^3 {\frac{{{x^2}{\rm{d}}x}}{{\left( {x + 1} \right)\sqrt {x + 1} }}} \)
- Tính tích phân \(I = \int\limits_0^1 {\frac{{x{\rm{d}}x}}{{{x^2} + 1}}} .\)
- Tích phân \(I = \int_0^{\frac{\pi }{3}} {x\sin 2xdx = \frac{\pi }{a} + \frac{{\sqrt 3 }}{b}} \). Khi đó giá trị a + b là
- Biết rằng \(\int\limits_0^1 {\frac{{2x + 3}}{{2 - x}}} dx = a\ln 2 + b\) với \(a,b \in Q\).
- Cho \(\int\limits_0^{\frac{\pi }{2}} {f(x)dx = 5} .\). Tính \(\int\limits_0^{\frac{\pi }{2}} {\left[ {f(x) + 2\cos x} \right]} dx.\)
- Cho hàm số f(x) liên tục trên R và \(\int\limits_0^{{\pi ^2}} {f(x)dx = 2018} \). Tính \(I = \int\limits_0^\pi {xf({x^2}} )dx.\)
- Cho f(x) là hàm số chẵn \(\int\limits_{ - 3}^0 {f\left( x \right)} dx = a\). Chọn khẳng định đúng trong các khẳng định sau
- Tính diện tích hình phẳng giới hạn bởi các đường y = x3, y = 0 và hai đường thẳng x = -1;x = 2
- Diện tích hình phẳng giới hạn bởi các đồ thị hàm số \(y = {x^3} - x;y = 2x\) và các đường x = -1; x = 1 được
- Hình phẳng giới hạn bởi đồ thị hàm số y = 2x - x2 và y = x khi quay quanh trục Ox tạo thành khối tròn xoay c�
- Thể tích vật thể tròn xoay khi quay hình phẳng giới hạn bởi các đường y = tanx, y = 0, x = 0, x=pi/3 quanh trục Ox
- Cho hai mặt cầu (S1), (S2) có cùng bán kính R thỏa mãn tính chất: Tâm của (S1) thuộc (S2) và ngược lại.
- Một vật chuyển động với vận tốc v(t), có gia tốc là \(a\left( t \right) = 3{t^2} + t\,\left( {m/{s^2}} \right)\).
- Một khối cầu có bán kính 5dm, người ta cắt bỏ 2 phần bằng 2 mặt phẳng vuông góc bán kính và cách tâm 3dm để là
- Trên mặt phẳng phức, cho điểm A biểu diễn số phức 3 - 2i điểm B biểu diễn số phức -1 + 6i.
- Tìm số phức liên hợp của số phức z = (-1 + 4i)(5 + 2i)
- Cho số phức \(z = 1 + \sqrt 3 i\). Khi đó:
- Cho số phức z thỏa mãn iz + 2 – i = 0.
- Cho hai số phức \({z_1} = 1 - 2i,{z_2} = x - 4 + yi\) với \(x,y \in R\). Tìm cặp (x; y) để \({z_2} = 2{\bar z_1}\).
- Gọi z1; z2 là hai nghiệm phức của phương trình \({z^2} - 2z + 2 = 0\). Tính \(M = z_1^{2000} + z_2^{1000}\)
- Tính môđun của số phức z = 3 - 4i
- Cho số phức z thỏa mãn |z - 1 = |z - i|. Tìm mô đun nhỏ nhất của số phức w = 2z + 2 - i.
- Tập hợp các điểm trong mặt phẳng phức biểu diễn các số phức z thỏa mãn \(2\left| {z - i} \right| = \left| {z - \overline z&n
- Trong không gian với hệ tọa độ Oxyz cho \(\overrightarrow u = \left( { - 2;\,\,3;\,\,0} \right),\overrightarrow v = \left(
- Trong Câu 1:không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\left\{ \begin{array}{l}x = 1\\y = 2 + t\\z = 3 + 2t\end{arra
- Trong không gian với hệ tọa độ Oxyz cho ba điểm \(A\left( {1; - 1;1} \right),{\rm{ }}B\left( {2;1; - 2} \right),{\rm{ }}C\left( {0;0
- Trong không gian với hệ tọa độ Oxyz, cho véc tơ \(\overrightarrow {n\,} = \left( {2; - 4;6} \right)\).
- Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x + y = 0.
- Trong không gian với hệ toạ độ Oxyz cho ba điểm A(2; 0; 0), B(0; -3; 0), C(0; 0; 5). Viết phương trình mặt phẳng (ABC).
- Trong không gian Oxyz cho đường thẳng \(d:\frac{{x - 1}}{1} = \frac{{y + 1}}{2} = \frac{{z - 2}}{1}.
- Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;-1; 0), B(-1; 2; -2) và C(3; 0; -4).
- Trong không gian với hệ tọa độ Oxyz cho điểm A(1; -1; 3) và hai đường thẳng \({d_1}:\frac{{x - 4}}{1} = \frac{{y +
- Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): x + 2y -2z + 1 = 0 và điểm M(1;-2;2).
- Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(-2; 3; 1) và B(5; 6; 2).
- Trong không gian với hệ trục Oxyz, cho đường thẳng \(d:\,x - 1 = \frac{{y - 2}}{2} = \frac{{z - 4}}{3}\) và mặt phẳng (P):
- Trong không gian với hệ tọa độ Oxyz cho M(2; 3;-1), N(-2;-1; 3).
- Cho đường thẳng \(\left( d \right):\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 - t\\z = 3t\end{array} \right.
- Viết phương trình mặt cầu có tâm I(-1; 2;3) và tiếp xúc với mặt phẳng (P): 2x - y - 2z + 1= 0
- Trong không gian với hệ tọa độ Oxyz, phương trình mặt cầu (S) có tâm I(-1; 2;1) và đi qua điểm A(0; 4; -1) là
- Trong không gian với hệ tọa độ Oxyz, xét mặt cầu (S) đi qua hai điểm \(A\left( {1;2;1} \right),B\left( {3;2;3} \right),\)
- Trong không gian với hệ tọa độ Oxyz, cho bốn điểm \(A\left( {1; - 2;0} \right),B\left( {0; - 1;1} \right),C\left( {2;1; - 1} \righ
- Trong không gian với hệ trục toạ độ Oxyz cho mặt cầu (S) có đường tròn lớn ngoại tiếp tam giác ABC với A(0; 2; 4),
- Trong không gian Oxyz cho các mặt phẳng \(\left( P \right):x - y + 2z + 1 = 0,\left( Q \right):2x + y + z - 1 = 0\).
- Trong không gian với hệ toạ độ Oxyz, gọi \(\left( \alpha \right)\) là mặt phẳng đi qua hai điểm A(2; 0; 1) v
Bộ đề thi nổi bật
UREKA AANETWORK
XEM NHANH CHƯƠNG TRÌNH LỚP 12
Toán 12
Lý thuyết Toán 12
Giải bài tập SGK Toán 12
Giải BT sách nâng cao Toán 12
Trắc nghiệm Toán 12
Hình học 12 Chương 3
Ngữ văn 12
Lý thuyết Ngữ Văn 12
Soạn văn 12
Soạn văn 12 (ngắn gọn)
Văn mẫu 12
Soạn Ai đã đặt tên cho dòng sông
Tiếng Anh 12
Giải bài Tiếng Anh 12
Giải bài Tiếng Anh 12 (Mới)
Trắc nghiệm Tiếng Anh 12
Unit 8 Lớp 12 Life in the future
Tiếng Anh 12 mới Unit 4
Vật lý 12
Lý thuyết Vật Lý 12
Giải bài tập SGK Vật Lý 12
Giải BT sách nâng cao Vật Lý 12
Trắc nghiệm Vật Lý 12
Ôn tập Vật lý 12 Chương 3
Hoá học 12
Lý thuyết Hóa 12
Giải bài tập SGK Hóa 12
Giải BT sách nâng cao Hóa 12
Trắc nghiệm Hóa 12
Ôn tập Hóa học 12 Chương 4
Sinh học 12
Lý thuyết Sinh 12
Giải bài tập SGK Sinh 12
Giải BT sách nâng cao Sinh 12
Trắc nghiệm Sinh 12
Sinh Học 12 Chương 1 Tiến hóa
Lịch sử 12
Lý thuyết Lịch sử 12
Giải bài tập SGK Lịch sử 12
Trắc nghiệm Lịch sử 12
Lịch Sử 12 Chương 2 Lịch Sử VN
Địa lý 12
Lý thuyết Địa lý 12
Giải bài tập SGK Địa lý 12
Trắc nghiệm Địa lý 12
Địa Lý 12 VĐSD và BVTN
GDCD 12
Lý thuyết GDCD 12
Giải bài tập SGK GDCD 12
Trắc nghiệm GDCD 12
GDCD 12 Học kì 1
Công nghệ 12
Lý thuyết Công nghệ 12
Giải bài tập SGK Công nghệ 12
Trắc nghiệm Công nghệ 12
Công nghệ 12 Chương 3
Tin học 12
Lý thuyết Tin học 12
Giải bài tập SGK Tin học 12
Trắc nghiệm Tin học 12
Tin học 12 Chương 2
Cộng đồng
Hỏi đáp lớp 12
Tư liệu lớp 12
Xem nhiều nhất tuần
Video: Vợ nhặt của Kim Lân
Đề cương HK1 lớp 12
Video ôn thi THPT QG môn Văn
Video ôn thi THPT QG môn Sinh
Video ôn thi THPT QG môn Vật lý
Video ôn thi THPT QG Tiếng Anh
Video ôn thi THPT QG môn Hóa
Video ôn thi THPT QG môn Toán
Sóng- Xuân Quỳnh
Khái quát văn học Việt Nam từ đầu CMT8 1945 đến thế kỉ XX
Người lái đò sông Đà
Đất Nước- Nguyễn Khoa Điềm
Đàn ghi ta của Lor-ca
Tây Tiến
Ai đã đặt tên cho dòng sông
Quá trình văn học và phong cách văn học
YOMEDIA YOMEDIA ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Bỏ qua Đăng nhập ×Thông báo
Bạn vui lòng đăng nhập trước khi sử dụng chức năng này.
Đồng ý ATNETWORK ON
QC Bỏ qua >>
Từ khóa » F(x) Là Một Nguyên Hàm Của Hàm Số Y=xe^x^2
-
F(x) Là Một Nguyên Hàm Của Hàm Số Y = X.e^(x^2). Hàm
-
F(x) Là Một Nguyên Hàm Của Hàm Số Y = X.e^(x^2). Hàm...
-
F(x) Là Một Nguyên Hàm Của Hàm Số Y = Xe^(x^2 ... - Vietjack.online
-
Họ Các Nguyên Hàm Của Hàm Số F(x)=xe^(x^2 ) Là
-
F(x) Là Một Nguyên Hàm Của Hàm Số Y = X.e^(x^2). Hàm
-
F(x) Là Một Nguyên Hàm Của Hàm Số Y = X.e^(x^2). Hàm
-
Tìm Nguyên Hàm Xe^(-x^2) | Mathway
-
F(x) Là Một Nguyên Hàm Của Hàm Số Y=xe^x^2 - Hàng Hiệu
-
Nguyên Hàm Xe X 2
-
F(x) Là Một Nguyên Hàm Của Hàm Số Y = X E X... - Hoc24
-
[LỜI GIẢI] Gọi F( X ) Là Một Nguyên Hàm Của Hàm Số F( X ) = Xe
-
Họ Nguyên Hàm Của Hàm Số (f( X ) = (e^x) + X ) Là:
-
Cho F(x)=(x−1)e^x Là Một Nguyên Hàm Của Hàm Số F(x)e^2x. Tìm ...
-
F(x) Là Một Nguyên Hàm Của Hàm Số Y=xex2. - Y = X E X 2 - CungHocVui