Factoring Multivariable Polynomials - Tiger Algebra Trang chủ » (g) (5a^ 2 -1/5x^ 2 )(10x+5y) » Factoring Multivariable Polynomials - Tiger Algebra Có thể bạn quan tâm G-5c G5c 0b7 G5 C32g55tqwr G5 C34g55twwr G 5cc HomeTopicsAdd to HomeContactTigerMilk.Education GmbHPrivacy policyTerms of serviceCopyright Ⓒ 2013-2024tiger-algebra.comThis site is best viewed with Javascript. If you are unable to turn on Javascript, please click here. Enter an equation or problemClear Solve × Camera input is not recognized!abcaxy/|abs|( )789*456-%123+<>0,.=abcabcdefghijklmnopqrstuvwxyz␣.Solution - Factoring multivariable polynomials 5x2y2⋅(3x3y−2x+4y3) 5x^2y^2*(3x^3y-2x+4y^3)Other Ways to SolveFactoring multivariable polynomialsStep by Step SolutionStep 1 :Equation at the end of step 1 : (((15•(x5))•(y3))+((20•(x2))•(y5)))-((2•5x3)•y2) Step 2 :Equation at the end of step 2 : (((15•(x5))•(y3))+((22•5x2)•y5))-(2•5x3y2) Step 3 :Equation at the end of step 3 : (((3•5x5) • y3) + (22•5x2y5)) - (2•5x3y2) Step 4 :Step 5 :Pulling out like terms : 5.1 Pull out like factors : 15x5y3 - 10x3y2 + 20x2y5 = 5x2y2 • (3x3y - 2x + 4y3) Trying to factor a multi variable polynomial : 5.2 Factoring 3x3y - 2x + 4y3 Try to factor this multi-variable trinomial using trial and errorFactorization failsFinal result : 5x2y2 • (3x3y - 2x + 4y3) How did we do?Please leave us feedback.Why learn thisTerms and topics Factoring polynomials with four or more terms Multiplying exponents Factoring binomials as sum or difference of cubes Related links Variables with Exponents - How to Multiply and Divide them Math Forum - Ask Dr. Math How to factor five term polynomial - Yahoo Answers abstract algebra - Factoring multivariate polynomial - Mathematics Stack Exchange Latest Related Drills Solved Từ khóa » (g) (5a^ 2 -1/5x^ 2 )(10x+5y) 5x^2-10x+5y^2+15y+20=0 - Solution 10x+5y-2x-y= - Solution [PDF] Equations Of Straight Lines | Mathcentre X+2y=2x-5, X-y=3 - Symbolab Solve Powerequation (10x^4y^3+5x^3y^2-15x^2y-25x^2y^4) Implicit Differentiation - Math Is Fun [PDF] Section 14.4 Chain Rules With Two Variables - UCSD Math Department