Find N If Displaystyle Limx To 2dfracxn2nx280 And N Class 11 Maths ...

CoursesCourses for KidsFree study materialOffline CentresMoreStore IconStore

Talk to our experts

1800-120-456-456

Sign In
  • Question Answer
  • Class 11
  • Maths
  • Find n if displaystyle limx to...
seo-qnaheader left imagearrow-right Answerdown arrowQuestion Answers for Class 12down arrowClass 12 BiologyClass 12 ChemistryClass 12 EnglishClass 12 MathsClass 12 PhysicsClass 12 Social ScienceClass 12 Business StudiesClass 12 EconomicsQuestion Answers for Class 11down arrowClass 11 EconomicsClass 11 Computer ScienceClass 11 BiologyClass 11 ChemistryClass 11 EnglishClass 11 MathsClass 11 PhysicsClass 11 Social ScienceClass 11 AccountancyClass 11 Business StudiesQuestion Answers for Class 10down arrowClass 10 ScienceClass 10 EnglishClass 10 MathsClass 10 Social ScienceClass 10 General KnowledgeQuestion Answers for Class 9down arrowClass 9 General KnowledgeClass 9 ScienceClass 9 EnglishClass 9 MathsClass 9 Social ScienceQuestion Answers for Class 8down arrowClass 8 ScienceClass 8 EnglishClass 8 MathsClass 8 Social ScienceQuestion Answers for Class 7down arrowClass 7 ScienceClass 7 EnglishClass 7 MathsClass 7 Social ScienceQuestion Answers for Class 6down arrowClass 6 ScienceClass 6 EnglishClass 6 MathsClass 6 Social ScienceQuestion Answers for Class 5down arrowClass 5 ScienceClass 5 EnglishClass 5 MathsClass 5 Social ScienceQuestion Answers for Class 4down arrowClass 4 ScienceClass 4 EnglishClass 4 MathsSearchIconbannerFind n if \[\displaystyle \lim_{x \to 2}\dfrac{{{x}^{n}}-{{2}^{n}}}{x-2}=80\] and n being a positive integer.AnswerVerifiedVerified558k+ viewsHint: In this question, we need to find the value of n if \[\displaystyle \lim_{x \to 2}\dfrac{{{x}^{n}}-{{2}^{n}}}{x-2}=80.\] Put x = 2, and will give us \[\dfrac{0}{0}\] form. So, we will first use L’Hopital’s rule and then evaluate the limit. After evaluating the limit, it will be in the form of x so we will equate it to 80 and get the value of n. According to L’Hopital’s rule, if \[\displaystyle \lim_{x \to a}\dfrac{f\left( x \right)}{g\left( x \right)}\] is in \[\left( \dfrac{0}{0} \right)\] form, then we can take \[\displaystyle \lim_{x \to a}\dfrac{f\left( x \right)}{g\left( x \right)}=\displaystyle \lim_{x \to a}\dfrac{{{f}^{'}}\left( x \right)}{{{g}^{'}}\left( x \right)}.\]Complete step-by-step answer:Here, we are given that the function of limit as \[\displaystyle \lim_{x \to 2}\dfrac{{{x}^{n}}-{{2}^{n}}}{x-2}.\] Let us try to evaluate the limit. Putting x = 2, it will give us \[\left( \dfrac{0}{0} \right)\] form, so it is in indeterminate form. Hence, we need to apply L’Hopital’s rule according to which \[\displaystyle \lim_{x \to a}\dfrac{f\left( x \right)}{g\left( x \right)}=\displaystyle \lim_{x \to a}\dfrac{{{f}^{'}}\left( x \right)}{{{g}^{'}}\left( x \right)}.\] If \[\displaystyle \lim_{x \to a}\dfrac{f\left( x \right)}{g\left( x \right)}\] is in indeterminate form \[\left( \dfrac{0}{0}\text{or}\dfrac{\infty }{\infty } \right).\] Hence, we need to take the derivative of \[{{x}^{n}}-{{2}^{n}}\] in numerator and the derivative of x – 2 in the denominator. We know that \[\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}\] and \[\dfrac{d}{dx}\left( a \right)=0\] where ‘a’ is constant. So, the derivative of \[{{x}^{n}}-{{2}^{n}}=n{{x}^{n-1}}-0=n{{x}^{n-1}}\] (because \[{{2}^{n}}\] is constant). We know that \[\dfrac{d}{dx}\left( x \right)=1\] and \[\dfrac{d}{dx}\left( 2 \right)=0.\] So, the derivative of x – 2 = 1 – 0 = 1. Now, \[\displaystyle \lim_{x \to 2}\dfrac{{{x}^{n}}-{{2}^{n}}}{x-2}=\displaystyle \lim_{x \to 2}\dfrac{\dfrac{d}{dx}\left( {{x}^{n}}-{{2}^{n}} \right)}{\dfrac{d}{dx}\left( x-2 \right)}\]So calculated, the derivative of \[{{x}^{n}}-{{2}^{n}}\] is \[n{{x}^{n-1}}\] and the derivative of x – 2 is 1. Hence, we get,\[\displaystyle \lim_{x \to 2}\dfrac{{{x}^{n}}-{{2}^{n}}}{x-2}=\displaystyle \lim_{x \to 2}\dfrac{n{{x}^{n-1}}}{1}\]\[\displaystyle \lim_{x \to 2}\dfrac{{{x}^{n}}-{{2}^{n}}}{x-2}=\displaystyle \lim_{x \to 2}n{{x}^{n-1}}\]Now, evaluating the limit on the right side, by putting x = 2, we get, \[\displaystyle \lim_{x \to 2}\dfrac{{{x}^{n}}-{{2}^{n}}}{x-2}=n{{2}^{n-1}}\]But we are given \[\displaystyle \lim_{x \to 2}\dfrac{{{x}^{n}}-{{2}^{n}}}{x-2}\]to be equal to 80. So, we can say that \[{{n}^{2n-1}}\] is equal to 80. So, \[{{n}^{2n-1}}=80\]As we know that 80 can be written as \[5\times 16,\] so,\[n{{2}^{n-1}}=5\times 16\]Also, we know that, \[{{2}^{4}}=16.\]So, we get,\[n{{2}^{n-1}}=5\times {{2}^{4}}\]Now we can write 4 as 5 – 1, so we get, \[\Rightarrow n{{2}^{n-1}}=5\times {{2}^{5-1}}\]By comparing, we get n = 5. Here, n = 5 is the required answer. Note: Students should note that indeterminate form has types \[\dfrac{0}{0},\dfrac{\infty }{\infty },0\times \infty ,\infty -\infty .\] If our limit is any of these forms then we can apply L’Hopital’s. For \[\dfrac{0}{0},\dfrac{\infty }{\infty },\] L’Hopital’s rule is applied directly but for \[0\times \infty ,\infty -\infty \]we have to first convert them into \[\dfrac{0}{0}\text{or}\dfrac{\infty }{\infty }\] form. While comparing \[n{{2}^{n-1}}=80,\] we can just use the trial and error method. Recently Updated PagesMaster Class 12 Economics: Engaging Questions & Answers for Successarrow-rightMaster Class 12 Maths: Engaging Questions & Answers for Successarrow-rightMaster Class 12 Biology: Engaging Questions & Answers for Successarrow-rightMaster Class 12 Physics: Engaging Questions & Answers for Successarrow-rightMaster Class 8 Maths: Engaging Questions & Answers for Successarrow-rightClass 8 Question and Answer - Your Ultimate Solutions Guidearrow-rightMaster Class 12 Economics: Engaging Questions & Answers for Successarrow-rightMaster Class 12 Maths: Engaging Questions & Answers for Successarrow-rightMaster Class 12 Biology: Engaging Questions & Answers for Successarrow-rightMaster Class 12 Physics: Engaging Questions & Answers for Successarrow-rightMaster Class 8 Maths: Engaging Questions & Answers for Successarrow-rightClass 8 Question and Answer - Your Ultimate Solutions Guidearrow-right
  • 1
  • 2
Trending doubtsWhat is meant by exothermic and endothermic reactions class 11 chemistry CBSEarrow-right10 examples of friction in our daily lifearrow-rightOne Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSEarrow-right1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSEarrow-rightDifference Between Prokaryotic Cells and Eukaryotic Cellsarrow-rightWhat are Quantum numbers Explain the quantum number class 11 chemistry CBSEarrow-rightWhat is meant by exothermic and endothermic reactions class 11 chemistry CBSEarrow-right10 examples of friction in our daily lifearrow-rightOne Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSEarrow-right1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSEarrow-rightDifference Between Prokaryotic Cells and Eukaryotic Cellsarrow-rightWhat are Quantum numbers Explain the quantum number class 11 chemistry CBSEarrow-right
  • 1
  • 2

Từ khóa » Xn-2n/x-2=80