Giải Bài 1 2 3 4 5 6 7 8 9 Trang 34 Sgk Toán 6 Tập 1 Cánh Diều
Có thể bạn quan tâm
Hướng dẫn giải Bài §7. Quan hệ chia hết. Tính chất chia hết sgk Toán 6 tập 1 bộ Cánh Diều. Nội dung bài Giải bài 1 2 3 4 5 6 7 8 9 trang 34 sgk Toán 6 tập 1 Cánh Diều bao gồm đầy đủ phần lí thuyết kèm bài giải các câu hỏi, hoạt động, luyện tập vận dụng và bài tập, giúp các bạn học sinh học tốt môn toán 6.
§7. QUAN HỆ CHIA HẾT. TÍNH CHẤT CHIA HẾT
Câu hỏi khởi động trang 30 Toán 6 tập 1 CD
Lớp 6A có 6 tổ học sinh. Để tổ chức liên hoan cho lớp, cô Ngân đã mua 42 chiếc bánh ngọt và 45 quả quýt.
Cô Ngân có thể chia đều số bánh ngọt cho 6 tổ được không?
Cô Ngân có thể chia đều số quả quýt cho 6 tổ được không?
Trả lời:
Để biết cô Ngân có chia đều số bánh ngọt và số quả quýt cho 6 tổ hay không thì ta thực hiện phép chia.
Ta có: 42 : 6 = 7 ; 45 : 6 = 7 (dư 3).
Khi đó ta nói 42 chia hết cho 6 và 45 không chia hết cho 6 (qua bài học dưới này ta sẽ tìm hiểu kĩ hơn)
Vậy cô Ngân có thể chia đều số bánh ngọt cho 6 tổ và không thể chia đều số quả quýt cho 6 tổ.
I. QUAN HỆ CHIA HẾT
Hoạt động 1 trang 30 Toán 6 tập 1 CD
a) Thực hiện các phép tính 42 : 6 và 45 : 6;
b) Trong hai phép chia trên, phép chia nào là phép chia hết, phép chia nào là phép chia có dư?
Trả lời:
a) 42 : 6 = 7 ; 45 : 6 = 7 (dư 3).
b) Khi đó ta có:
+) 42 = 6 . 7 nên 42 chia hết cho 6.
+) Do 45 chia cho 6 dư 3 nên 45 không chia hết cho 6.
Luyện tập vận dụng 1 trang 30 Toán 6 tập 1 CD
Viết ngày và tháng sinh của em dưới dạng ngày a tháng b. Chỉ ra một ước của a và hai bội của b.
Trả lời:
Giả sử em sinh ngày 14 tháng 6 năm 2010. Khi đó a = 14 và b = 6.
Ta có: 14 = 2 . 7 nên 14 chia hết cho 2. Do đó 2 là một ước của 14.
Lại có: 6 . 2 = 12 và 6 . 3 = 18 nên 12 và 18 đều chia hết cho 6.
Do đó 12 và 18 là hai bội của 6.
Hoạt động 2 trang 31 Toán 6 tập 1 CD
a) Thực hiện các phép tính: 9 . 0; 9 . 1; 9 . 2; 9 . 3; 9 . 4; 9 . 5; 9 . 6.
b) Hãy chỉ ra bảy bội của 9.
Trả lời:
a) Ta có: 9 . 0 = 0; 9 . 1 = 9; 9 . 2 = 18; 9 . 3 = 27; 9 . 4 = 36; 9 . 5 = 45; 9 . 6 = 54.
b) Theo câu a, ta thấy các số 0; 9; 18; 27; 36; 45; 54 đều chia hết cho 9 nên bảy bội của 9 là: 0; 9; 18; 27; 36; 45; 54.
Luyện tập vận dụng 2 trang 31 Toán 6 tập 1 CD
a) Viết các bội nhỏ hơn 30 của 8.
b) Viết các bội có hai chữ số của 11.
Trả lời:
a) Để tìm các bội của 8, ta lần lượt nhân 8 với 0; 1; 2; 3; 4; …
Vì đề bài yêu cầu các bội của 8 nhỏ hơn 30 nên ta lần lượt nhân 8 với 0; 1; 2; 3 (vì 8.4 = 32 > 30).
Do đó: ta được các bội nhỏ hơn 30 của 8 là: 0; 8; 16; 24.
b) Để tìm các bội của 11 ta lần lượt lấy 11 nhân với 0; 1; 2; 3; ….
Đề bài yêu cầu tìm các bội có hai chữ số của 11 nên ta lần lượt lấy 11 nhân với 1; 2; 3; …; 9. (Vì 11. 0 = 0 là số có một chữ số và 11 . 10 = 110 là số có ba chữ số)
Vậy ta được các bội có hai chữ số của 11 là: 11; 22; 33; 44; 55; 66; 77; 88; 99.
Hoạt động 3 trang 31 Toán 6 tập 1 CD
a) Tìm số thích hợp ở ⍰:
8 : 1 = ⍰;
8 : 5 = ⍰ (dư ⍰);
8 : 2 = ⍰;
8 : 6 = ⍰ (dư ⍰);
8 : 3 = ⍰ (dư ⍰);
8 : 7 = ⍰ (dư ⍰);
8 : 4 = ⍰;
8 : 8 = ⍰;
b) Hãy chỉ ra các ước của 8.
Trả lời:
a) Ta có:
8 : 1 = 8
8 : 2 = 4
8 : 3 = 2 (dư 2)
8 : 4 = 2
8 : 5 = 1 (dư 3)
8 : 6 = 1 (dư 2)
8 : 7 = 1 (dư 1)
8 : 8 = 1.
b) Theo câu a), ta có 8 chia hết cho các số 1; 2; 4; 8 nên các ước của 8 là: 1; 2; 4; 8.
Luyện tập vận dụng 3 trang 32 Toán 6 tập 1 CD
Tìm các ước của 25.
Trả lời:
Để tìm các ước của 25, ta lần lượt thực hiện phép chia số 25 cho các số tự nhiên từ 1 đến 25. Các phép chia hết là:
25 : 1 = 25; 25 : 5 = 5; 25 : 25 = 1.
Vậy các ước của 25 là 1; 5 và 25.
II. TÍNH CHẤT CHIA HẾT
Hoạt động 4 trang 32 Toán 6 tập 1 CD
Chỉ ra số thích hợp cho ⍰ theo mẫu:
m | Số a chia hết cho m | Số b chia hết cho m | Thực hiện phép chia (a + b) cho m |
5 | 95 | 55 | (95 + 55) : 5 = 30 |
6 | ⍰ | ⍰ | (⍰ + ⍰) : 6 = ⍰ |
9 | ⍰ | ⍰ | (⍰+ ⍰) : 9 = ⍰ |
Trả lời:
m | Số a chia hết cho m | Số b chia hết cho m | Thực hiện phép chia (a + b) cho m |
5 | 95 | 55 | (95 + 55) : 5 = 30 |
6 | 78 | 54 | (78 + 54) : 6 = 22 |
9 | 45 | 108 | (45 + 108) : 9 = 17 |
Luyện tập vận dụng 4 trang 32 Toán 6 tập 1 CD
Không tính tổng, hãy giải thích tại sao A = 1 930 + 1 945 + 1 975 chia hết cho 5.
Trả lời:
Ta có:
1 930 : 5 = 386;
1 945 : 5 = 389;
1 975 : 5 = 395.
Do đó các số 1 930; 1 945 và 1 975 đều chia hết cho 5 nên theo tính chất chia hết của một tổng thì tổng A = 1 930 + 1 945 + 1 975 chia hết cho 5.
Hoạt động 5 trang 32 Toán 6 tập 1 CD
Chỉ ra số thích hợp cho ⍰ theo mẫu:
m | Số a chia hết cho m | Số b chia hết cho m | Thực hiện phép chia (a – b) cho m |
7 | 49 | 21 | (49 – 21) : 7 = 4 |
8 | ⍰ | ⍰ | (⍰ + ⍰) : 8 = ⍰ |
11 | ⍰ | ⍰ | (⍰+ ⍰) : 11 = ⍰ |
Trả lời:
m | Số a chia hết cho m | Số b chia hết cho m | Thực hiện phép chia (a – b) cho m |
7 | 49 | 21 | (49 – 21) : 7 = 4 |
8 | 56 | 16 | (56 – 16) : 8 = 5 |
11 | 110 | 33 | (110 – 33) : 11 = 7 |
Luyện tập vận dụng 5 trang 33 Toán 6 tập 1 CD
Không tính hiệu, hãy giải thích tại sao A = 2 020 – 1 820 chia hết cho 20.
Trả lời:
Ta có:
2 020 : 20 = 101;
1 820 : 20 = 91;
Do đó các số 2 020 và 1 820 đều chia hết cho 20 nên theo tính chất chia hết của một hiệu ta có hiệu A = 2 020 – 1 820 chia hết cho 20.
Hoạt động 6 trang 33 Toán 6 tập 1 CD
Chỉ ra số thích hợp cho ⍰ theo mẫu:
m | Số a chia hết cho m | Số b tùy ý | Thực hiện phép chia (a.b) cho m |
9 | 36 | 2 | (36.2) : 9 = 8 |
10 | ⍰ | ⍰ | (⍰ + ⍰) : 10 = ⍰ |
15 | ⍰ | ⍰ | (⍰+ ⍰) : 15 = ⍰ |
Trả lời:
m | Số a chia hết cho m | Số b tùy ý | Thực hiện phép chia (a.b) cho m |
9 | 36 | 2 | (36.2) : 9 = 8 |
10 | 100 | 3 | (100.3) : 10 = 30 |
15 | 75 | 4 | (75.4) : 15 = 20 |
Luyện tập vận dụng 6 trang 33 Toán 6 tập 1 CD
Không tính giá trị biểu thức, hãy giải thích tại sao A = 36 . 234 + 217 . 24 – 54 . 13 chia hết cho 6.
Trả lời:
Ta có: 36 : 6 = 6; 24 : 6 = 4; 54 : 6 = 9.
Nên các số 36; 24; 54 đều là các số chia hết cho 6, áp dụng tính chất chia hết của một tích ta có:
36 . 234; 217. 24; 54 . 13 đều là các tích chia hết cho 6.
Khi đó: A = 36 . 234 + 217 . 24 – 54 . 13 chia hết cho 6.
(Theo tính chất chia hết của một tổng và tính chất chia hết của một hiệu).
GIẢI BÀI TẬP
Sau đây là phần Giải bài 1 2 3 4 5 6 7 8 9 trang 34 sgk Toán 6 tập 1 Cánh Diều. Nội dung chi tiết bài giải từng bài tập các bạn xem dưới đây:
Giải bài 1 trang 34 Toán 6 tập 1 CD
Chỉ ra bốn bội của số m, biết:
a) m = 15;
b) m = 30;
c) m = 100.
Bài giải:
Vì một số tự nhiên khác 0 có vô số bội nên ta mỗi học sinh có thể chọn các bội khác nhau của số m tùy ý thích hợp. Ví dụ các em có thể làm như sau.
a) m = 15
Để tìm bốn bội của 15, ta lần lượt lấy 15 nhân với 0; 1; 2; 3
Vậy ta được bốn bội của 15 là: 0; 15; 30 và 45.
b) m = 30
Để tìm bốn bội của 30, ta lần lượt lấy 30 nhân với 0; 1; 2; 3
Vậy ta được bốn bội của 30 là: 0; 30; 60; 90.
c) m = 100
Để tìm bốn bội của 100, ta lần lượt lấy 100 nhân với 0; 1; 2; 3
Vậy ta được bốn bội của 100 là: 0; 100; 200; 300.
Tương tự cách làm trên, mỗi em học sinh có thể tìm được bốn bội khác nhau tùy ý thỏa mãn yêu cầu bài toán.
Giải bài 2 trang 34 Toán 6 tập 1 CD
Tìm tất cả các ước của số n, biết:
a) n = 13;
b) n = 20;
c) n = 26.
Bài giải:
a) n = 13
Để tìm các ước của số 13, ta lần lượt thực hiện phép chia số 13 cho các số tự nhiên từ 1 đến 13. Các phép chia hết là:
13 : 1 = 13; 13 : 13 = 1.
Vậy các ước của số 13 là 1 và 13.
b) n = 20
Để tìm các ước của số 20, ta lần lượt thực hiện phép chia số 20 cho các số tự nhiên từ 1 đến 20. Các phép chia hết là:
20 : 1 = 20; 20 : 2 = 10; 20 : 4 = 5; 20 : 5 = 4; 20 : 10 = 2; 20 : 20 = 1.
Vậy các ước của số 20 là: 1; 2; 4; 5; 10 và 20.
c) n = 26
Để tìm các ước của số 26, ta lần lượt thực hiện phép chia số 26 cho các số tự nhiên từ 1 đến 26. Các phép chia hết là:
26 : 1 = 26; 26 : 2 = 13; 26 : 13 = 2; 26 : 26 = 1.
Vậy các ước của số 26 là: 1; 2; 13 và 26.
Giải bài 3 trang 34 Toán 6 tập 1 CD
Tìm số tự nhiên x, biết x là bội của 9 và 20 < x < 40.
Bài giải:
Vì x là bội của 9 nên trước tiên, ta đi tìm các bội của 9, ta lần lượt lấy 9 nhân với 0; 1; 2; 3; 4; 5; …
Ta được các bội của 9 là: 0; 9; 18; 27; 36; 45; …
Mà 20 < x < 40
Vậy số tự nhiên x thỏa mãn yêu cầu bài toán là 27; 36.
Giải bài 4 trang 34 Toán 6 tập 1 CD
Đội Sao đỏ của trường có 24 bạn. Cô phụ trách muốn chia cả đội thành các nhóm đều nhau để kiểm tra vệ sinh lớp học, mỗi nhóm có ít nhất 2 bạn. Em hãy chia giúp cô giáo bằng các cách có thể.
Bài giải:
Vì các nhóm có số bạn đều nhau nên số bạn của mỗi nhóm phải là ước của 24.
Ta đi tìm các ước của số 24, ta thực hiện phép chia số 24 cho các số tự nhiên từ 1 đến 24. Các phép chia hết là:
24 : 1 = 24; 24 : 2 = 12; 24 : 3 = 8; 24 : 4 = 6; 24 : 6 = 4; 24 : 8 = 3; 24 : 12 = 2; 24 : 24 = 1.
Do đó các ước của 24 là 1; 2; 3; 4; 6; 8; 12; 24.
Vì mội đội có ít nhất hai bạn nên cô phụ trách có thể chia đội thành:
+ Nếu mỗi nhóm có 2 bạn thì số nhóm là: 24 : 2 = 12 (nhóm)
+ Nếu mỗi nhóm có 3 bạn thì số nhóm là: 24 : 3 = 8 (nhóm)
+ Nếu mỗi nhóm có 4 bạn thì số nhóm là: 24 : 4 = 6 (nhóm)
+ Nếu mỗi nhóm có 6 bạn thì số nhóm là: 24 : 6 = 4 (nhóm)
+ Nếu mỗi nhóm có 8 bạn thì số nhóm là: 24 : 8 = 3 (nhóm)
+ Nếu mỗi nhóm có 12 bạn thì số nhóm là: 24 : 12 = 2 (nhóm)
Một nhóm không thể có 24 bạn, vì 24 là tổng sổ bạn của cả đội Sao đỏ.
Vậy cô có thể chia đội thành:
+ 12 nhóm mỗi nhóm có 2 bạn;
+ 8 nhóm mỗi nhóm có 3 bạn;
+ 6 nhóm mỗi nhóm có 4 bạn;
+ 4 nhóm mỗi nhóm có 6 bạn;
+ 3 nhóm mỗi nhóm có 8 bạn;
+ 2 nhóm mỗi nhóm có 12 bạn.
Giải bài 5 trang 34 Toán 6 tập 1 CD
Hãy tìm đáp án đúng trong các đáp án A, B, C và D:
a) Nếu m ⁝ 4 và n ⁝ 4 thì m + n chia hết cho
A. 16. B. 12. C. 8. D. 4.
b) Nếu m ⁝ 6 và n ⁝ 2 thì m + n chia hết cho
A. 6. B. 4. C. 3. D. 2.
Bài giải:
a) Vì m ⁝ 4 và n ⁝ 4 thì m + n chia hết cho 4 (áp dụng tính chất chia hết của một tổng).
⇒ Đáp án: D.
b) Ta có: 6 = 2 . 3
Mà m ⁝ 6 nên suy ra m ⁝ 2
Lại có n ⋮ 2
Do đó: m + n cũng chia hết cho 2 (tính chất chia hết của một tổng)
⇒ Đáp án: D.
Giải bài 6 trang 34 Toán 6 tập 1 CD
Chỉ ra ba số tự nhiên m, n, p thỏa mãn các điều kiện sau: m không chia hết cho p và n không chia hết cho p nhưng m + n chia hết cho p.
Bài giải:
Ta có thể đưa ra nhiều bộ ba số thỏa mãn yêu cầu bài toán như sau:
Ví dụ 1: Các số 7; 9 và 2.
Ta có 7 không chia hết cho 2 và 9 cũng không chia hết cho 2 nhưng 7 + 9 = 16 lại chia hết cho 2.
Ví dụ 2: Các số 13; 19 và 4.
Ta có 13 không chia hết cho 4 và 19 cũng không chia hết cho 4 nhưng 13 + 19 = 32 lại chia hết cho 4.
Ví dụ 3: Các số 33; 67 và 10.
Ta có 33 không chia hết cho 10 và 67 cũng không chia hết cho 10 nhưng 33 + 67 = 100 lại chia hết cho 10.
Tương tự, các em có thể đưa ra các bộ ba số khác nhau thỏa mãn yêu cầu bài toán.
Qua bài tập 6 này, ta rút ra nhận xét như sau:
+ Nếu m chia hết cho p và n chia hết cho p thì tổng m + n chia hết cho p nhưng điều ngược lại chưa chắc đã đúng.
+ Nếu tổng m + n chia hết cho p thì chưa chắc m chia hết cho p và n chia hết cho p.
Giải bài 7 trang 34 Toán 6 tập 1 CD
Cho a và b là hai số tự nhiên . Giải thích tại sao nếu (a+b) ⁝ m và a ⁝ m thì b ⁝ m.
Bài giải:
Vì (a+b) ⁝ m nên ta có số tự nhiên k (k ≠ 0) thỏa mãn a + b = m.k (1)
Tương tự, vì a ⁝ m nên ta cũng có số tự nhiên h (h ≠ 0) thỏa mãn a = m.h
Thay a = m. h vào (1) ta được: m.h + b = m.k
Suy ra b = m.k – m.h = m.(k – h) (tính chất phân phối của phép nhân với phép trừ).
Mà m ⁝ m nên theo tính chất chia hết của một tích ta có m(k-h) ⁝ m.
Vậy b ⁝ m
Giải bài 8 trang 34 Toán 6 tập 1 CD
Một cửa hàng có hai loại khay nướng bánh. Loại khay thứ nhất chứa 3 chiếc bánh. Loại khay thứ hai chứa 6 chiếc bánh. Sau một số lần nướng bằng cả hai loại khay trên, người bán hàng đếm được số bánh làm ra là 125 chiếc. Hỏi người bán hàng đã đếm đúng hay sai số bánh làm được? Biết rằng mỗi lần nướng, các khay đều xếp đủ số bánh.
Bài giải:
Hai loại khay nướng bánh mỗi loại lần lượt chứa 3 chiếc bánh và 6 chiếc bánh.
Vì 3 chia hết cho 3 và 6 cũng chia hết cho 3 và mỗi lần nướng các khay đều được xếp đủ số bánh nên theo tính chất chia hết của một tích và một tổng thì tổng số bánh làm ra sau một số lần nướng bằng cả hai loại khay trên phải là số chia hết cho 3.
Mà 125 : 3 = 41 (dư 2) hay 125 không chia hết cho 3.
Vậy người bán hàng đã đếm sai số bánh làm được.
Giải bài 9 trang 34 Toán 6 tập 1 CD
Một đoàn khách du lịch đi tham quan chợ nổi Cái Răng ở TP. Cần Thơ bằng thuyền, mỗi thuyền chở 5 khách du lịch. Sau đó một số khách trong đoàn rời địa điểm tham quan trước bằng thuyền to hơn, mỗi thuyền chở 10 khách du lịch. Hướng dẫn viên kiểm đếm số khách du lịch còn lại là 21 người. Hỏi hết quả kiểm đếm trên là đúng hay sai?
Bài giải:
Ban đầu mỗi thuyền chở 5 khách du lịch nên tổng số khách phải là số chia hết cho 5.
Một số khách rời đi bằng thuyền chở 10 khách du lịch nên số khách rời đi chia hết cho 10 mà 10 = 5. 2 nên số khách rời đi phải chia hết cho 5.
Do đó số khách còn lại cũng phải chia hết cho 5 (theo tính chất chia hết của một hiệu).
Mà 21 : 5 = 4 (dư 1) hay 21 không chia hết cho 5.
Vậy kết quả kiểm đếm là sai.
Bài trước:
👉 Giải bài 1 2 3 4 5 6 7 8 9 trang 29 sgk Toán 6 tập 1 Cánh Diều
Bài tiếp theo:
👉 Giải bài 1 2 3 4 5 6 trang 36 37 sgk Toán 6 tập 1 Cánh Diều
Trên đây là bài Hướng dẫn Giải bài 1 2 3 4 5 6 7 8 9 trang 34 sgk Toán 6 tập 1 Cánh Diều đầy đủ, ngắn gọn và dễ hiểu nhất. Chúc các bạn làm bài môn toán 6 tốt nhất!
“Bài tập nào khó đã có giaibaisgk.com“
Từ khóa » Toán Cánh Diều Lớp 6 Trang 34
-
Giải Toán 6 Trang 34 Cánh Diều
-
Bài 6 Trang 34 Toán Lớp 6 Tập 1 SGK Cánh Diều
-
Bài 1 Trang 34 Toán Lớp 6 Tập 1 SGK Cánh Diều
-
Giải Bài Tập 1 SGK Cánh Diều Toán 6 Tập 1 Trang 34
-
Giải Bài 4 Trang 34 Cánh Diều Toán 6 Tập 1 - Tech12h
-
Phép Cộng Và Phép Trừ Phân Số Trang 34, 35, 36, 37, 38 Toán 6 Tập 2 ...
-
Trả Lời Câu Hỏi Khởi động Trang 34 SGK Toán 6 Cánh Diều
-
Giải Bài 2 Trang 34 SGK Toán 6 Cánh Diều Tập 1
-
Giải Bài Tập 1 Trang 34 SGK Toán 6 Cánh Diều Tập 1.
-
Hướng Dẫn Giải Bài 6 (Trang 34, SGK Toán 6, Tập 1, Bộ Cánh Diều)
-
Bài 5 Trang 34 Toán Lớp 6 Tập 1 (Cánh Diều)
-
Giải Bài Tập 1 Trang 34 SGK Toán 6 Cánh Diều Tập 1. - YouTube
-
Giải Bài 3 Trang 34 SGK Toán 6 Cánh Diều Tập 1
-
Giải Bài 2 Trang 34 SGK Toán 6 Cánh Diều Tập 1