Giải Bài 1, 2, 3 Trang 5 Sách Bài Tập Toán 8 Tập 2
Có thể bạn quan tâm
Câu 1 trang 5 Sách bài tập (SBT) Toán 8 tập 2
Trong các số \( - 2; - 1,5; - 1;0,5;{2 \over 3};2;3\) số nào là nghiệm của mỗi phương trình sau đây :
a. \({y^2} - 3 = 2y\)
b. \(t + 3 = 4 - t\)
c. \({{3x - 4} \over 2} + 1 = 0\)
Giải:
Để biết một số có là nghiệm của phương trình hay không ta thay số đó vào hai vế. Nếu hai vế có giá trị bằng nhau thì số đó là nghiệm của phương trình.
a. \({y^2} - 3 = 2y\)
| y | - 2 | - 1,5 | - 1 | 0,5 | \({2 \over 3}\) | 2 | 3 |
| \({y^2} - 3\) | 1 | 0,75 | - 2 | - 2,75 | \( - {{23} \over 9}\) | 1 | 6 |
| 2y | - 4 | - 3 | - 2 | 1 | \({4 \over 3}\) | 4 | 6 |
Vậy phương trình có hai nghiệm : y = - 1 và y = 3.
b. \(t + 3 = 4 - t\)
| t | - 2 | - 1,5 | - 1 | 0,5 | \({2 \over 3}\) | 2 | 3 |
| t + 3 | 1 | 1,5 | 2 | 3,5 | \({{11} \over 3}\) | 5 | 6 |
| 4 – t | 6 | 5,5 | 5 | 3,5 | \({{10} \over 3}\) | 2 | 1 |
Vậy phương trình \(t + 3 = 4 - t\) có một nghiệm : t = 0,5.
c. \({{3x - 4} \over 2} + 1 = 0\)
| x | - 2 | - 1,5 | - 1 | 0,5 | \({2 \over 3}\) | 2 | 3 |
| \({{3x - 4} \over 2} + 1\) | - 4 | - 3,25 | - 2,5 | - 1,25 | 0 | 2 | 3,5 |
Vậy phương trình \({{3x - 4} \over 2} + 1 = 0\) có một nghiệm : x = \({2 \over 3}\).
Câu 2 trang 5 Sách bài tập (SBT) Toán 8 tập 2
Hãy thử lại và cho biết các khẳng định sau có đúng không :
a. \({x^3} + 3x = 2{x^2} - 3x + 1 \Leftrightarrow x = - 1\)
b. \(\left( {z - 2} \right)\left( {{z^2} + 1} \right) = 2z + 5 \Leftrightarrow z = 3\)
Giải:
a. \({x^3} + 3x = 2{x^2} - 3x + 1\)
Thay vào hai vế của phương trình, ta có:
- Vế trái: \({\left( { - 1} \right)^3} + 3.\left( { - 1} \right) = - 1 - 3 = - 4\)
- Vế phải: \(2{\left( { - 1} \right)^2} - 3.\left( { - 1} \right) + 1 = 2 + 3 + 1 = 6\)
Vậy khẳng định trên sai.
b. \(\left( {z - 2} \right)\left( {{z^2} + 1} \right) = 2z + 5 \Leftrightarrow z = 3\)
Thay z = 3 vào hai vế của phương trình, ta có:
- Vế trái: \(\left( {3 - 2} \right)\left( {{3^2} + 1} \right) = 9 + 1 = 10\)
- Vế phải: \(2.3 + 5 = 11\)
Vậy khẳng định trên sai.
Câu 3 trang 5 Sách bài tập (SBT) Toán 8 tập 2
Cho ba biểu thức \(5x - 3\), \({x^2} - 3x + 12\) và \(\left( {x + 1} \right)\left( {x - 3} \right)\)
a. Lập ba phương trình, mỗi phương trình có hai vế là hai trong ba biểu thức đã cho.
b. Hãy tính giá trị của các biểu thức đã cho khi x nhận tất cả các giá trị thuộc tập hợp M = {x ∈ ℤ | - 5 ≤ x ≤ 5 }, điền vào bảng sau rồi cho biết mỗi phương trình ở câu a. có những nghiệm nào trong tập hợp M:
| x | - 5 | - 4 | - 3 | - 2 | - 1 | 0 | 1 | 2 | 3 | 4 | 5 |
| 5x – 3 |
|
|
|
|
|
|
|
|
|
|
|
| \({x^2} - 3x + 12\) |
|
|
|
|
|
|
|
|
|
|
|
| \(\left( {x + 1} \right)\left( {x - 3} \right)\) |
|
|
|
|
|
|
|
|
|
|
|
Giải:
a. (1): \(5x - 3 = {x^2} - 3x + 12\)
b. (2): \({x^2} - 3x + 12 = \left( {x + 1} \right)\left( {x -0 3} \right)\)
c. (3): \(5x - 3 = \left( {x + 1} \right)\left( {x - 3} \right)\
b. Ta có: x ∈ ℤ | - 5 ≤ x ≤ 5 suy ra:
\(x \in \left\{ { - 5; - 4; - 3; - 2; - 1;0;1;2;3;4;5} \right\}\)
| x | - 5 | - 4 | - 3 | - 2 | - 1 | 0 | 1 | 2 | 3 | 4 | 5 |
| 5x – 3 | - 28 | - 23 | - 18 | - 13 | - 8 | - 3 | 2 | 7 | 12 | 17 | 22 |
| \({x^2} - 3x + 12\) | 52 | 40 | 30 | 22 | 16 | 12 | 10 | 10 | 12 | 16 | 22 |
| \(\left( {x + 1} \right)\left( {x - 3} \right)\) | 32 | 21 | 12 | 5 | 0 | - 3 | - 4 | - 3 | 0 | 5 | 12 |
Phương trình (1) có nghiệm là x = 3 và x = 5
Phương trình (2) không có nghiệm
Phương trình (3) có nghiệm là x = 0
Giaibaitap.me
Từ khóa » Toán 8 Sách Bài Tập Trang 5
-
Bài 1 Trang 5 SBT Toán 8 Tập 1
-
Bài 1, 2, 3, 4, 5 Trang 5 SBT Toán 8 Tập 1 - Haylamdo
-
Bài 1 Trang 5 SBT Toán 8 Tập 1
-
Giải Bài 1, 2, 3, 4 Trang 5 Sách Bài Tập Toán 8 Tập 1
-
Giải Sách Bài Tập Toán 8 Tập 2 Trang 5, 6 Chính Xác Nhất
-
Câu 3 Trang 5 Sách Bài Tập (SBT) Toán 8 Tập 1
-
Giải Vở Bài Tập Toán Lớp 8 Tập 1 Trang 5, Câu 1 Trang 5 Sách Bài ...
-
Câu 2 Trang 5 Sách Bài Tập Toán 8 Tập 1: Rút Gọn Các Biểu Thức Sau
-
Bài Tập 12,3,4,5,6 Trang 5, 6 SGK Toán Lớp 8 Tập 1: Nhân đơn Thức ...
-
Câu 5 Trang 5 Sách Bài Tập (SBT) Toán 8 Tập 1
-
Giải Toán 8 Trang 5, 6 - SGK Toán 8 Tập 1
-
[Top Bình Chọn] - Bài Tập Toán 8 Trang 5 - Trần Gia Hưng
-
Câu 4 Trang 5 Sách Bài Tập (SBT) Toán 8 Tập 2 - Giải Nhanh