Giải Bài 1, 2, 3 Trang 83 Sách Giáo Khoa Hình Học 10
Có thể bạn quan tâm
Bài 1 trang 83 sgk hình học 10
Tìm tâm và bán kính của các đường tròn sau:
a) \({x^2} + {\rm{ }}{y^2} - 2x-2y - 2{\rm{ }} = 0\)
b) \(16{x^2} + {\rm{ }}16{y^2} + {\rm{ }}16x{\rm{ }}-{\rm{ }}8y{\rm{ }}-{\rm{ }}11{\rm{ }} = {\rm{ }}0\)
c) \({x^{2}} + {\rm{ }}{y^{2}} - {\rm{ }}4x{\rm{ }} + {\rm{ }}6y{\rm{ }}-{\rm{ }}3{\rm{ }} = {\rm{ }}0.\)
Giải
a) Ta có : \(-2a = -2 \Rightarrow a = 1\)
\(-2b = -2 \Rightarrow b = 1 \Rightarrow I(1; 1)\)
\({R^2} = {a^2} + {b^2} - c = {1^2} + {1^2} - ( - 2) = 4 \Rightarrow R = \sqrt 4 = 2\)
b) \(16{x^2} + {\rm{ }}16{y^2} + {\rm{ }}16x{\rm{ }}-{\rm{ }}8y{\rm{ }}-{\rm{ }}11{\rm{ }} = {\rm{ }}0\)
\( \Leftrightarrow {x^2} + {y^2} + x - {1 \over 2}y - {{11} \over {16}} = 0\)
\(\eqalign{ & - 2a = 1 \Rightarrow a = - {1 \over 2} \cr & - 2b = - {1 \over 2} \Rightarrow b = {1 \over 4} \cr & \Rightarrow I\left( { - {1 \over 2};{1 \over 4}} \right) \cr} \)
\({R^2} = {a^2} + {b^2} - c = {\left( { - {1 \over 2}} \right)^2} + {\left( {{1 \over 4}} \right)^2} - \left( { - {{11} \over {16}}} \right) = 1 \Rightarrow R = \sqrt 1 = 1\)
c)
\(\eqalign{ & - 2a = - 4 \Rightarrow a = 2 \cr & - 2b = 6 \Rightarrow b = - 3 \cr & \Rightarrow I\left( {2; - 3} \right) \cr} \)
\({R^2} = {a^2} + {b^2} - c = {2^2} + {\left( { - 3} \right)^2} - \left( { - 3} \right) = 16 \Rightarrow R = \sqrt {16} = 4\)
Bài 2 trang 83 sgk hình học 10
Lập phương trình đườơng tròn \((C)\) trong các trường hợp sau:
a) \((C)\) có tâm \(I(-2; 3)\) và đi qua \(M(2; -3)\);
b) \((C)\) có tâm \(I(-1; 2)\) và tiếp xúc với đường thẳng \(d : x – 2y + 7 = 0\)
c) \((C)\) có đường kính \(AB\) với \(A(1; 1)\) và \(B(7; 5)\)
Giải
a) Ta tìm bán kính \({R^2} = {\rm{ }}I{M^2} \Rightarrow {R^{2}} = {\rm{ }}IM{\rm{ }} = {\rm{ }}{\left( {2{\rm{ }} + {\rm{ }}2} \right)^2} + {\rm{ }}( - 3{\rm{ }} - {3^2}){\rm{ }} = {\rm{ }}52\)
Phương trình đường tròn \((C)\):
\({\left( {x{\rm{ }} + 2} \right)^2} + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ }}3} \right)^2} = 52\)
b) Đường tròn tiếp xúc với đường thẳng \(d\) nên khoảng cách từ tâm \(I\) tới đường thẳng \(d\) phải bằng bán kính đường tròn:
\(d(I; d) = R\)
Ta có : \( R = d(I, d) = \frac{|-1-2.2+7|}{\sqrt{1^{2}+(-2)^{2}}}\) = \(\frac{2}{\sqrt{5}}\)
Phương trình đường tròn cần tìm là:
\({\left( {x{\rm{ }} + 1} \right)^2} + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ }}2} \right)^2}= \left(\frac{2}{\sqrt{5}}\right )^{2}\)
\( \Leftrightarrow {\left( {x{\rm{ }} + 1} \right)^2} + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ }}2} \right)^2} = {4 \over 5}\)
c) Tâm \(I\) là trung điểm của \(AB\), có tọa độ :
\(x = \frac{1 +7}{2} = 4\); \(y = \frac{1 +5}{2} = 3\) suy ra \(I(4; 3)\)
\(AB = 2\sqrt {13}\) suy ra \( R = \sqrt {13}\)
Phương trình đường tròn cần tìm là:
\({\left( {x{\rm{ }} - 4{\rm{ }}} \right)^2} + {\rm{ }}{\left( {y{\rm{ }}-{\rm{ }}3} \right)^2} = 13\)
Bài 3 trang 83 sgk hình học 10
Lập phương trình đường tròn đi qua ba điểm:
a) \(A(1; 2); B(5; 2); C(1; -3)\)
b) \(M(-2; 4); N(5; 5); P(6; -2)\)
Giải
Sử dụng phương trình đường tròn có dạng: \(x^2+y^2-2 ax – 2by +c = 0\)
a) Đường tròn đi qua điểm \(A(1; 2)\) nên ta có:
\(1^2+ 2^2– 2a -4b + c = 0 \Leftrightarrow 2a + 4b – c = 5\)
Đường tròn đi qua điểm \(B(5; 2)\) nên ta có:
\(5^2+ 2^2– 10a -4b + c = 0 \Leftrightarrow 10a + 4b – c = 29\)
Đường tròn đi qua điểm \(C(1; -3)\) nên ta có:
\(1^2+ (-3)^2 – 2a + 6b + c = 0 \Leftrightarrow 2a - 6b – c = 10\)
Để tìm \(a, b, c\) ta giải hệ: \(\left\{\begin{matrix} 2a + 4b- c = 5 (1) & & \\ 10a +4b - c= 29 (2) & & \\ 2a- 6b -c =10 (3) & & \end{matrix}\right.\)
Giải hệ ta được: \(\left\{ \matrix{ a = 3 \hfill \cr b = - 0,5 \hfill \cr c = - 1 \hfill \cr} \right.\)
Phương trình đường tròn cần tìm là: \({{x^2} + {\rm{ }}{y^2} - {\rm{ }}6x{\rm{ }} + {\rm{ }}y{\rm{ }} - {\rm{ }}1{\rm{ }} = {\rm{ }}0} \)
b) Đường tròn đi qua điểm \(M(-2; 4)\) nên ta có:
\((-2)^2+ 4^2+4a -8b + c = 0 \Leftrightarrow 4a - 8b + c = -20\)
Đường tròn đi qua điểm \(N(5; 5)\) nên ta có:
\(5^2+ 5^2– 10a -10b + c = 0 \Leftrightarrow 10a +10b – c = 50\)
Đường tròn đi qua điểm \(P(6; -2)\) nên ta có:
\(6^2+ (-2)^2 – 12a + 4b + c = 0 \Leftrightarrow 12a - 4b – c = 40\)
Ta có hệ phương trình:
$$\left\{ \matrix{ 4a - 8b + c = - 20 \hfill \cr 10a + 10b - c = 50 \hfill \cr 12a - 4b - c = 40 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{ a = 2 \hfill \cr b = 1 \hfill \cr c = - 20 \hfill \cr} \right.$$
Phương trình đường tròn đi qua ba điểm \(M(-2; 4); N(5; 5); P(6; -2)\) là:
\(x^2+ y^2- 4x – 2y - 20 = 0\)
Giaibaitap.me
Từ khóa » Giải Toán Hình 10 Trang 83 Bài 2
-
Bài 2 Trang 83 SGK Hình Học 10 | SGK Toán Lớp 10
-
Giải Bài 2 Trang 83 SGK Hình Học 10
-
Giải Bài 2 Trang 83 – SGK Hình Học Lớp 10 - Chữa Bài Tập
-
Giải Toán 10: Bài 2 Trang 83 SGK Hình Học 10 - Top Lời Giải
-
Bài 2 Trang 83 Sgk Hình Học 10: Bài 2. Phương Trình đường Tròn
-
Bài Tập 2 Trang 83 SGK Hình Học 10 - Hoc247
-
Bài 2 Trang 83 SGK Hình Học 10 - CungHocVui
-
Bài 2 Trang 83 SGK Hình Học 10
-
Giải Bài 2 Trang 83 SGK Hình Học 10 - YouTube
-
Giải Bài 2 Trang 83 SGK Hình Học 10: - Nova E-guide
-
Giải Toán Hình 10 SGK Tập 1 Trang 83, 84 Chính Xác Nhất
-
Giải Bài Tập SGK Toán 10 Phần Hình Học-Bài 2: Phương Trình đường ...
-
Giải Câu 1 Bài 2: Phương Trình đường Tròn SGK Hình Học 10 Trang 83
-
Bài 1,2,3,4, 5,6 Trang 83,84 Hình Học 10: Phương Trình đường Tròn