Giải Bài 24, 25, 26, 27 Trang 30, 31 Sách Bài Tập Toán 8 Tập 1
Có thể bạn quan tâm
Câu 24 trang 30 Sách bài tập (SBT) Toán 8 tập 1
Làm tính nhân phân thức :
a. \({{3x - 2} \over {2xy}} - {{7x - 4} \over {2xy}}\)
b. \({{3x + 5} \over {4{x^3}y}} - {{5 - 15x} \over {4{x^3}y}}\)
c. \({{4x + 7} \over {2x + 2}} - {{3x + 6} \over {2x + 2}}\)
d. \({{9x + 5} \over {2\left( {x - 1} \right){{\left( {x + 3} \right)}^2}}} - {{5x - 7} \over {2\left( {x - 1} \right){{\left( {x + 3} \right)}^2}}}\)
e. \({{xy} \over {{x^2} - {y^2}}} - {{{x^2}} \over {{y^2} - {x^2}}}\)
f. \({{5x + {y^2}} \over {{x^2}y}} - {{5y - {x^2}} \over {x{y^2}}}\)
g. \({x \over {5x + 5}} - {x \over {10x - 10}}\)
h. \({{x + 9} \over {{x^2} - 9}} - {3 \over {{x^2} + 3x}}\)
Giải:
a. \({{3x - 2} \over {2xy}} - {{7x - 4} \over {2xy}}\)\( = {{3x - 2} \over {2xy}} + {{4 - 7x} \over {2xy}} = {{3x - 2 + 4 - 7x} \over {2xy}} = {{2\left( {1 - 2x} \right)} \over {2xy}} = {{1 - 2x} \over {xy}}\)
b. \({{3x + 5} \over {4{x^3}y}} - {{5 - 15x} \over {4{x^3}y}}\)\( = {{3x + 5} \over {4{x^3}y}} + {{15x - 5} \over {4{x^3}y}} = {{3x + 5 + 15x - 5} \over {4{x^3}y}} = {{18x} \over {4{x^3}y}} = {9 \over {2{x^2}y}}\)
c. \({{4x + 7} \over {2x + 2}} - {{3x + 6} \over {2x + 2}}\)\( = {{4x + 7} \over {2x + 2}} + {{ - \left( {3x + 6} \right)} \over {2x + 2}} = {{4x + 7 - 3x - 6} \over {2x + 2}} = {{x + 1} \over {2\left( {x + 1} \right)}} = {1 \over 2}\)
d. \({{9x + 5} \over {2\left( {x - 1} \right){{\left( {x + 3} \right)}^2}}} - {{5x - 7} \over {2\left( {x - 1} \right){{\left( {x + 3} \right)}^2}}}\)\( = {{9x + 5} \over {2\left( {x - 1} \right){{\left( {x + 3} \right)}^2}}} + {{7 - 5x} \over {2\left( {x - 1} \right){{\left( {x + 3} \right)}^2}}}\)
\( = {{9x + 5 + 7 - 5x} \over {2\left( {x - 1} \right){{\left( {x + 3} \right)}^2}}} = {{4\left( {x + 3} \right)} \over {2\left( {x - 1} \right){{\left( {x + 3} \right)}^2}}} = {2 \over {\left( {x - 1} \right)\left( {x + 3} \right)}}\)
e. \({{xy} \over {{x^2} - {y^2}}} - {{{x^2}} \over {{y^2} - {x^2}}}\)\( = {{xy} \over {{x^2} - {y^2}}} + {{{x^2}} \over {{x^2} - {y^2}}} = {{xy + {x^2}} \over {{x^2} - {y^2}}} = {{x\left( {x + y} \right)} \over {\left( {x + y} \right)\left( {x - y} \right)}} = {x \over {x - y}}\)
f. \({{5x + {y^2}} \over {{x^2}y}} - {{5y - {x^2}} \over {x{y^2}}}\)\( = {{5x + {y^2}} \over {{x^2}y}} + {{{x^2} - 5y} \over {x{y^2}}} = {{y\left( {5x + {y^2}} \right)} \over {{x^2}{y^2}}} + {{x\left( {{x^2} - 5y} \right)} \over {{x^2}{y^2}}}\)
\( = {{5xy + {y^3} + {x^3} - 5xy} \over {{x^2}{y^2}}} = {{{x^3} + {y^3}} \over {{x^2}{y^2}}}\)
g. \({x \over {5x + 5}} - {x \over {10x - 10}}\)\( = {x \over {5\left( {x + 1} \right)}} + {{ - x} \over {10\left( {x - 1} \right)}} = {{2x\left( {x - 1} \right)} \over {10\left( {x + 1} \right)\left( {x - 1} \right)}} + {{ - x\left( {x + 1} \right)} \over {10\left( {x + 1} \right)\left( {x - 1} \right)}}\)
\( = {{2{x^2} - 2x - {x^2} - x} \over {10\left( {x + 1} \right)\left( {x - 1} \right)}} = {{{x^2} - 3x} \over {10\left( {x + 1} \right)\left( {x - 1} \right)}}\)
h. \({{x + 9} \over {{x^2} - 9}} - {3 \over {{x^2} + 3x}}\)\( = {{x + 9} \over {\left( {x + 3} \right)\left( {x - 3} \right)}} + {{ - 3} \over {x\left( {x + 3} \right)}} = {{x\left( {x + 9} \right)} \over {x\left( {x + 3} \right)\left( {x - 3} \right)}} + {{ - 3\left( {x - 3} \right)} \over {x\left( {x + 3} \right)\left( {x - 3} \right)}}\)
\( = {{{x^2} + 9x - 3x + 9} \over {x\left( {x + 3} \right)\left( {x - 3} \right)}} = {{{x^2} + 6x + 9} \over {x\left( {x + 3} \right)\left( {x - 3} \right)}} = {{{{\left( {x + 3} \right)}^2}} \over {x\left( {x + 3} \right)\left( {x - 3} \right)}} = {{x + 3} \over {x\left( {x - 3} \right)}}\)
Câu 25 trang 30 Sách bài tập (SBT) Toán 8 tập 1
Theo định nghĩa của phép trừ, khi viết
\({A \over B} - {C \over D} - {E \over F}\) có nghĩa là \({A \over B} + {{ - C} \over D} + {{ - E} \over F}\)
Áp dụng điều này để làm các phép tính sau :
a. \({1 \over {3x - 2}} - {1 \over {3x + 2}} - {{3x - 6} \over {4 - 9{x^2}}}\)
b. \({{18} \over {\left( {x - 3} \right)\left( {{x^2} - 9} \right)}} - {3 \over {{x^2} - 6x + 9}} - {x \over {{x^2} - 9}}\)
Giải:
a. \({1 \over {3x - 2}} - {1 \over {3x + 2}} - {{3x - 6} \over {4 - 9{x^2}}}\)\( = {1 \over {3x - 2}} - {1 \over {3x + 2}} + {{3x - 6} \over {\left( {3x + 2} \right)\left( {3x - 2} \right)}}\)
\(\eqalign{ & = {{3x + 2} \over {\left( {3x + 2} \right)\left( {3x - 2} \right)}} + {{ - \left( {3x - 2} \right)} \over {\left( {3x + 2} \right)\left( {3x - 2} \right)}} + {{3x - 6} \over {\left( {3x + 2} \right)\left( {3x - 2} \right)}} \cr & = {{3x + 2 - 3x + 2 + 3x - 6} \over {\left( {3x + 2} \right)\left( {3x - 2} \right)}} = {{3x - 2} \over {\left( {3x + 2} \right)\left( {3x - 2} \right)}} = {1 \over {3x + 2}} \cr} \)
b. \({{18} \over {\left( {x - 3} \right)\left( {{x^2} - 9} \right)}} - {3 \over {{x^2} - 6x + 9}} - {x \over {{x^2} - 9}}\)\( = {{18} \over {{{\left( {x - 3} \right)}^2}\left( {x + 3} \right)}} + {{ - 3} \over {{{\left( {x - 3} \right)}^2}}} + {{ - x} \over {\left( {x + 3} \right)\left( {x - 3} \right)}}\)
\(\eqalign{ & = {{18} \over {{{\left( {x - 3} \right)}^2}\left( {x + 3} \right)}} + {{ - 3\left( {x + 3} \right)} \over {{{\left( {x - 3} \right)}^2}\left( {x + 3} \right)}} + {{ - x\left( {x - 3} \right)} \over {{{\left( {x - 3} \right)}^2}\left( {x + 3} \right)}} = {{18 - 3x - 9 - {x^2} + 3x} \over {{{\left( {x - 3} \right)}^2}\left( {x + 3} \right)}} \cr & = {{9 - {x^2}} \over {\left( {3 - {x^2}} \right)\left( {x + 3} \right)}} = {{\left( {3 - x} \right)\left( {3 + x} \right)} \over {\left( {3 - {x^2}} \right)\left( {x + 3} \right)}} = {1 \over {3 - x}} \cr} \)
Câu 26 trang 31 Sách bài tập (SBT) Toán 8 tập 1
Rút gọn biểu thức :
a. \({{3{x^2} + 5x + 1} \over {{x^3} - 1}} - {{1 - x} \over {{x^2} + x + 1}} - {3 \over {x - 1}}\)
b. \({1 \over {{x^2} - x + 1}} + 1 - {{{x^2} + 2} \over {{x^3} + 1}}\)
c. \({7 \over x} - {x \over {x + 6}} + {{36} \over {{x^2} + 6x}}\)
Giải:
a. \({{3{x^2} + 5x + 1} \over {{x^3} - 1}} - {{1 - x} \over {{x^2} + x + 1}} - {3 \over {x - 1}}\)
\(\eqalign{ & = {{3{x^2} + 5x + 1} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} + {{x - 1} \over {{x^2} + x + 1}} + {{ - 3} \over {x - 1}} \cr & = {{3{x^2} + 5x + 1} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} + {{{{\left( {x - 1} \right)}^2}} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} + {{ - 3\left( {{x^2} + x + 1} \right)} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} \cr & = {{3{x^2} + 5x + 1 + {x^2} - 2x + 1 - 3{x^2} - 3x - 3} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = {{{x^2} - 1} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} \cr & = {{\left( {x + 1} \right)\left( {x - 1} \right)} \over {\left( {x - 1} \right)\left( {{x^2} + x + 1} \right)}} = {{x + 1} \over {{x^2} + x + 1}} \cr} \)
b. \({1 \over {{x^2} - x + 1}} + 1 - {{{x^2} + 2} \over {{x^3} + 1}}\)\( = {1 \over {{x^2} - x + 1}} + 1 + {{ - \left( {{x^2} + 2} \right)} \over {\left( {x - 1} \right)\left( {{x^2} - x + 1} \right)}}\)
\(\eqalign{ & = {{x + 1} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} + {{{x^3} + 1} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} + {{ - \left( {{x^2} + 2} \right)} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} \cr & = {{x + 1 + {x^3} + 1 - {x^2} - 2} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = {{x + {x^3} - {x^2}} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = {{x\left( {{x^2} - x + 1} \right)} \over {\left( {x + 1} \right)\left( {{x^2} - x + 1} \right)}} = {x \over {x + 1}} \cr} \)
c. \({7 \over x} - {x \over {x + 6}} + {{36} \over {{x^2} + 6x}}\)\( = {7 \over x} + {{ - x} \over {x + 6}} + {{36} \over {{x^2} + 6x}} = {{7\left( {x + 6} \right)} \over {x\left( {x + 6} \right)}} + {{ - {x^2}} \over {x\left( {x + 6} \right)}} + {{36} \over {x\left( {x + 6} \right)}}\)
\(\eqalign{ & = {{7x + 42 - {x^2} + 36} \over {x\left( {x + 6} \right)}} = {{7x - {x^2} + 78} \over {x\left( {x + 6} \right)}} = {{13x + 78 - 6x - {x^2}} \over {x\left( {x + 6} \right)}} \cr & = {{13\left( {x + 6} \right) - x\left( {x + 6} \right)} \over {x\left( {x + 6} \right)}} = {{\left( {x + 6} \right)\left( {13 - x} \right)} \over {x\left( {x + 6} \right)}} = {{13 - x} \over x} \cr} \)
Câu 27 trang 31 Sách bài tập (SBT) Toán 8 tập 1
Nếu mua lẻ thì giá một bút bi là x đồng. Nhưng nếu mua từ 10 bút trở lên thì giá mỗi bút rẻ hơn 100 đồng. Cô Dung dùng 180 đồng để mua bút cho văn phòng.
Hãy biểu diễn qua x :
- Tổng số bút mua được khi mua lẻ ;
- Số bút mua được nếu mua cùng một lúc, biết rằng giá tiền một bút không quá 1200 đồng ;
- Số bút được lợi khi mua cùng một lúc so với khi mua lẻ.
Giải:
- Số bút mua được khi mua lẻ là : \({{180000} \over x}\) (bút)
- Vì giá mỗi cây bút không quá 1200 đồng nên nếu mua cùng lúc thì số bút lớn hơn 10 và mua được là \({{180000} \over {x - 100}}\) (bút)
Số bút được lợi so với mua lẻ là : \({{180000} \over {x - 100}} - {{180000} \over x}\) (bút)
Giaibaitap.me
Từ khóa » Toán 8 Phép Trừ Các Phần Thức đại Số Sbt
-
Giải SBT Toán 8 Bài 6: Phép Trừ Các Phân Thức đại Số
-
Sách Bài Tập Toán 8 Bài 6: Phép Trừ Các Phân Thức đại Số
-
Giải SBT Toán 8 - Bài 6: Phép Trừ Các Phân Thức đại Số
-
Giải Sách Bài Tập Toán 8 Bài 6: Phép Trừ Các Phân Thức Đại Số
-
SBT Toán 8 Bài 6: Phép Trừ Các Phân Thức đại Số - Haylamdo
-
Bài 6. Phép Trừ Các Phân Thức đại Số
-
Giải SBT Toán 8: Bài 6. Phép Trừ Các Phân Thức đại Số - TopLoigiai
-
Giải SBT - BÀI 6: PHÉP TRỪ CÁC PHÂN THỨC ĐẠI SỐ || Đại Số 8
-
Giải Bài Tập SBT Toán 8 Bài 6: Phép Trừ Các Phân Thức đại Số
-
Bài 6. Phép Trừ Các Phân Thức đại Số - Tìm đáp án, Giải Bài Tập, để
-
Phần Đại Số - SBT Toán 8 Tập 1
-
Câu 26 Trang 31 Sách Bài Tập Toán 8 Tập 1: Rút Gọn Biểu Thức
-
Giải SBT Toán 8 - Chương 2: Phân Thức đại Số - MarvelVietnam
-
Phép Trừ Các Phân Thức đại Số - Bài Tập SGK Lớp 8