Giải Bài 57, 58, 59, 60 Trang 61, 62 Sgk Toán 8 Tập 1

Bài 57 trang 61 sgk toán 8 tập 1

Chứng tỏ mỗi cặp phân thức sau bằng nhau:

a)\({3 \over {2x - 3}}\) và \({{3x + 6} \over {2{x^2} + x - 6}}\)

b)\({2 \over {x + 4}}\) và \({{2{x^2} + 6x} \over {{x^3} + 7{x^2} + 12x}}\)

Hướng dẫn làm bài:

a) \({3 \over {2x - 3}}\) và \({{3x + 6} \over {2{x^2} + x - 6}}\)

Cách 1: Dùng định nghĩa hai phân thức bằng nhau.

\({3 \over {2x - 3}}\)= \({{3x + 6} \over {2{x^2} + x - 6}}\)

Vì : \(3\left( {2{x^2} + x - 6} \right) = 6{x^2} + 3x - 18\)

=\(6{x^2} + 12x - 9x - 18\)

=\(2x\left( {3x + 6} \right) - 3\left( {3x + 6} \right)\)

=\(\left( {2x - 3} \right)\left( {3x + 6} \right)\)

Cách 2: Rút gọn phân thức

    \({{3x + 6} \over {2{x^2} + x - 6}} = {{3\left( {x + 2} \right)} \over {2{x^2} + 4x - 3x - 6}} = {{3\left( {x + 2} \right)} \over {2x\left( {x + 2} \right) - 3\left( {x + 2} \right)}}\)     

=\({{3\left( {x + 2} \right)} \over {\left( {x + 2} \right)\left( {2x - 3} \right)}} = {3 \over {2x - 3}}\)

b) \({2 \over {x + 4}}\) và \({{2{x^2} + 6x} \over {{x^3} + 7{x^2} + 12x}}\)

Cách 1:\({2 \over {x + 4}} = {{2{x^2} + 6x} \over {{x^3} + 7{x^2} + 12x}}\)

Vì : \(2\left( {{x^3} + 7{x^2} + 12x} \right) = 2{x^3} + 14{x^2} + 24x\)

\(=\left( {x + 4} \right)\left( {2{x^2} + 6x} \right)\)

\(= 2{x^3} + 6{x^2} + 8{x^2} + 24x = 2{x^3} + 14{x^2} + 24x\)

Nghĩa là \(2\left( {{x^3} + 7{x^2} + 12x} \right) = \left( {x + 4} \right)\left( {2{x^2} + 6x} \right)\)

Cách 2: \({{2{x^2} + 6x} \over {{x^3} + 7{x^2} + 12x}} = {{2x\left( {x + 3} \right)} \over {x\left( {{x^2} + 7x + 12} \right)}} = {{2\left( {x + 3} \right)} \over {{x^2} + 3x + 4x + 12}}\)

\( = {{2\left( {x + 3} \right)} \over {x\left( {x + 3} \right) + 4\left( {x + 3} \right)}} = {{2\left( {x + 3} \right)} \over {\left( {x + 3} \right)\left( {x + 4} \right)}} = {2 \over {x + 4}}\)

 

Bài 58 trang 62 sgk toán 8 tập 1

Thực hiện các phép tính sau:

a) \(\left( {{{2x + 1} \over {2x - 1}} - {{2x - 1} \over {2x + 1}}} \right):{{4x} \over {10x - 5}}\)                     

b) \(\left( {{1 \over {{x^2} + x}} - {{2 - x} \over {x + 1}}} \right):\left( {{1 \over x} + x - 2} \right);\)

c) \({1 \over {x - 1}} - {{{x^3} - x} \over {{x^2} + 1}}.\left( {{1 \over {{x^2} - 2x + 1}} + {1 \over {1 - {x^2}}}} \right).\)

Hướng dẫn làm bài:

a) \(\left( {{{2x + 1} \over {2x - 1}} - {{2x - 1} \over {2x + 1}}} \right):{{4x} \over {10x - 5}} = {{{{\left( {2x + 1} \right)}^2} - {{\left( {2x - 1} \right)}^2}} \over {\left( {2x - 1} \right)\left( {2x + 1} \right)}}.{{10x + 5} \over {4x}}\)

=\({{4{x^2} + 4x + 1 - 4{x^2} + 4x - 1} \over {\left( {2x - 1} \right)\left( {2x + 1} \right)}}.{{5\left( {2x + 1} \right)} \over {4x}}\)

=\({{8x.5\left( {2x + 1} \right)} \over {\left( {2x - 1} \right)\left( {2x + 1} \right).4x}} = {{10} \over {2x - 1}}\)

b) \(\left( {{1 \over {{x^2} + x}} - {{2 - x} \over {x + 1}}} \right):\left( {{1 \over x} + x - 2} \right)\)

=\(\left( {{1 \over {x\left( {x + 1} \right)}} + {{x - 2} \over {x + 1}}} \right):{{1 + {x^2} - 2x} \over x}\)

=\({{1 + x\left( {x - 2} \right)} \over {x\left( {x + 1} \right)}}.{x \over {{x^2} - 2x + 1}}\)

=\({{\left( {{x^2} - 2x + 1} \right)x} \over {x\left( {x + 1} \right)\left( {{x^2} - 2x + 1} \right)}} = {1 \over {x + 1}}\)

c) \({1 \over {x - 1}} - {{{x^3} - x} \over {{x^2} + 1}}.\left( {{1 \over {{x^2} - 2x + 1}} + {1 \over {1 - {x^2}}}} \right)\)

=\({1 \over {x - 1}} - {{{x^3} - x} \over {{x^2} + 1}}.\left[ {{1 \over {{{\left( {x - 1} \right)}^2}}} - {1 \over {\left( {x - 1} \right)\left( {x + 1} \right)}}} \right]\)

=\({1 \over {x - 1}} - {{x\left( {{x^2} - 1} \right)} \over {{x^2} + 1}}.{{x + 1 - \left( {x - 1} \right)} \over {{{\left( {x - 1} \right)}^2}.\left( {x + 1} \right)}}\)

=\({1 \over {x - 1}} - {{x\left( {x - 1} \right)\left( {x + 1} \right)} \over {{x^2} + 1}}.{{x + 1 - x + 1} \over {{{\left( {x - 1} \right)}^2}\left( {x + 1} \right)}}\)

=\({1 \over {x - 1}} - {{x\left( {x - 1} \right)\left( {x + 1} \right).2} \over {\left( {{x^2} + 1} \right){{\left( {x - 1} \right)}^2}\left( {x + 1} \right)}} = {1 \over {x - 1}} - {{2x} \over {\left( {{x^2} + 1} \right)\left( {x - 1} \right)}}\)

=\({{{x^2} + 1 - 2x} \over {\left( {{x^2} + 1} \right)\left( {x - 1} \right)}} = {{{{\left( {x - 1} \right)}^2}} \over {\left( {{x^2} + 1} \right)\left( {x - 1} \right)}} = {{x - 1} \over {{x^2} + 1}}\)

Bài 59 trang 62 sgk toán 8 tập 1

a) Cho biểu thức  \({{xP} \over {x + P}} - {{yP} \over {y - P}}\). Thay \(P = {{xy} \over {x - y}}\) vào biểu thức đã cho rồi rút gọn biểu thức.

b) Cho biểu thức \({{{P^2}{Q^2}} \over {{P^2} - {Q^2}}}\). Thay \(P = {{2xy} \over {{x^2} - {y^2}}}\) và \(Q = {{2xy} \over {{x^2} + {y^2}}}\)vào biểu thức đã cho rồi rút gọn biểu thức.

Hướng dẫn làm bài:      

a) Với \(P = {{xy} \over {x - y}}\)

Ta có:\({{xP} \over {x + P}} - {{yP} \over {y - P}} = {{{{{x^2}y} \over {x - y}}} \over {x + {{xy} \over {x - y}}}} - {{{{x{y^2}} \over {x - y}}} \over {y - {{xy} \over {x - y}}}}\)

=\({{{x^2}y} \over {{x^2}}} - {{x{y^2}} \over {{y^2}}} = y + x = x + y\)

b) Với \(P = {{2xy} \over {{x^2} - {y^2}}}\) và \(Q = {{2xy} \over {{x^2} + {y^2}}}\)

Ta có:\({{{P^2}{Q^2}} \over {{P^2} - {Q^2}}}\)\( = {{{{\left( {{{2xy} \over {{x^2} - {y^2}}}} \right)}^2}.{{\left( {{{2xy} \over {{x^2} + {y^2}}}} \right)}^2}} \over {{{\left( {{{2xy} \over {{x^2} - {y^2}}}} \right)}^2} - {{\left( {{{2xy} \over {{x^2} + {y^2}}}} \right)}^2}}}\)\( = {{{{\left[ {{{2xy.2xy} \over {\left( {{x^2} - {y^2}} \right)\left( {{x^2} + {y^2}} \right)}}} \right]}^2}} \over {{{4{x^2}{y^2}} \over {{{\left( {{x^2} - {y^2}} \right)}^2}}} - {{4{x^2}{y^2}} \over {{{\left( {{x^2} + {y^2}} \right)}^2}}}}}\)

=\({{{{{{\left( {4{x^2}{y^2}} \right)}^2}} \over {{{\left( {{x^4} - {y^4}} \right)}^2}}}} \over {{{4{x^2}{y^2}\left[ {{{\left( {{x^2} + {y^2}} \right)}^2} - {{\left( {{x^2} - {y^2}} \right)}^2}} \right]} \over {{{\left[ {\left( {{x^2} - {y^2}} \right)\left( {{x^2} + {y^2}} \right)} \right]}^2}}}}}\)

=\({{{{{{\left( {4{x^2}{y^2}} \right)}^2}} \over {{{\left( {{x^4} - {y^4}} \right)}^2}}}} \over {{{4{x^2}{y^2}.({x^4} + 2{x^2}{y^2} + {y^4} - {x^4} + 2{x^2}{y^2} - {y^4}} \over {{{\left( {{x^4} - {y^4}} \right)}^2}}}}}\)

=\({{{{{{\left( {4{x^2}{y^2}} \right)}^2}} \over {{{\left( {{x^4} - {y^4}} \right)}^2}}}} \over {{{4{x^2}{y^2}.4{x^2}{y^2}} \over {{{\left( {{x^4} - {y^4}} \right)}^2}}}}} = {{{{{{\left( {4{x^2}{y^2}} \right)}^2}} \over {{{\left( {{x^4} - {y^4}} \right)}^2}}}} \over {{{{{\left( {4{x^2}{y^2}} \right)}^2}} \over {{{\left( {{x^4} - {y^4}} \right)}^2}}}}} = 1\)

Bài 60 trang 62 sgk toán 8 tập 1

Cho biểu thức  \(\left( {{{x + 1} \over {2x - 2}} + {3 \over {{x^2} - 1}} - {{x + 3} \over {2x + 2}}} \right).{{4{x^2} - 4} \over 5}\).

a) Hãy tìm điều kiện của x để giá trị của biểu thức được xác định.

b) Chứng minh rằng khi giá trị của biểu thức được xác định thì nó không phụ thuộc vào giá trị của biến x.

Hướng dẫn làm bài:

a) \(2x - 2 = 2\left( {x - 1} \right) \ne 0\) khi \(x - 1 \ne 0\) hay \(x \ne 1\) 

\({x^2} - 1 = \left( {x - 1} \right)\left( {x + 1} \right) \ne 0\) khi \(x - 1 \ne 0\) và \( x + 1 \ne 0\)

hay \(x \ne 1\) và \( x \ne  - 1\)  

\(2x + 2 = 2\left( {x + 1} \right) \ne 0\) khi \(x + 1 \ne 0\) hay \(x \ne  - 1\) 

Do đó điều kiện để giá trị của biểu thức được xác định là \(x \ne  - 1,x \ne 1\)

b) Để chứng minh biểu thức không phục thuộc vào biến x ta phải chứng tỏ rằng có thể biến đổi biểu thức này thành một hằng số.

Thật vậy:\(\left( {{{x + 1} \over {2x - 2}} + {3 \over {{x^2} - 1}} - {{x + 3} \over {2x + 2}}} \right).{{4{x^2} - 4} \over 5}\)

=\(\left[ {{{x + 1} \over {2\left( {x - 1} \right)}} + {3 \over {\left( {x - 1} \right)\left( {x + 1} \right)}} - {{x + 3} \over {2\left( {x + 1} \right)}}} \right].{{4{x^2} - 4} \over 5}\)

=\({{{{\left( {x + 1} \right)}^2} + 6 - \left( {x + 3} \right)\left( {x - 1} \right)} \over {2\left( {x - 1} \right)\left( {x + 1} \right)}}.{{4\left( {x - 1} \right)\left( {x + 1} \right)} \over 5}\)

=\({{{x^2} + 2x + 1 + 6 - {x^2} - 2x + 3} \over {2\left( {x - 1} \right)\left( {x + 1} \right)}}.{{4\left( {x - 1} \right)\left( {x + 1} \right)} \over 5}\)

=\({{10} \over {2\left( {x - 1} \right)\left( {x + 1} \right)}}.{{4\left( {x - 1} \right)\left( {x + 1} \right)} \over 5}\)

=\({{10.4.\left( {x - 1} \right)\left( {x + 1} \right)} \over {2\left( {x - 1} \right)\left( {x + 1} \right).5}} = {{10.2} \over 5} = 4\)

Giaibaitap.me

Từ khóa » Toán Lớp 6 ôn Tập Chương 1 Trang 61 62