Giải Bài 6, 7, 8, 9, 10 Trang 92 Sách Giáo Khoa Hình Học 11
Có thể bạn quan tâm
Bài 6 trang 92 sgk hình học 11
Cho hình tứ diện \(ABCD\). Gọi \(G\) là trọng tâm tam giác \(ABC\). Chứng minh rằng: \(\overrightarrow{DA}+\overrightarrow{DB}+\overrightarrow{DC}=3\overrightarrow{DG}.\)
Giải
(H.3.5)
\(VT=\overrightarrow{DG}+\overrightarrow{GA}+\overrightarrow{DG}+\overrightarrow{GB}+\overrightarrow{DG}+\overrightarrow{GC}\)
\(=3\overrightarrow{DG}=VP\) (đpcm)

Bài 7 trang 92 sgk hình học 11
Gọi \(M\) và \(N\) lần lượt là trung điểm của các cạnh \(AC\) và \(BD\) của tứ diện \(ABCD\). Gọi \(I\) là trung điểm của đoạn thẳng \(MN\) và \(P\) là một điểm bất kì trong không gian. Chứng minh rằng:
a) \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0};\)
b) \(\overrightarrow{PI}=\frac{1}{4}(\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}+\overrightarrow{PD}).\)
Giải
(H.3.6)

a) \(\overrightarrow{IA}+\overrightarrow{IB}=2\overrightarrow{IM},\)
\(\overrightarrow{IC}+\overrightarrow{ID}=2\overrightarrow{IN}.\)
Cộng từng vế ta được :
\(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}.\)
b) \(\overrightarrow{PI}=\overrightarrow{PA}+\overrightarrow{AI},\)
\(\overrightarrow{PI}=\overrightarrow{PB}+\overrightarrow{BI},\)
\(\overrightarrow{PI}=\overrightarrow{PC}+\overrightarrow{CI},\)
\(\overrightarrow{PI}=\overrightarrow{PD}+\overrightarrow{DI}.\)
Cộng từng vế ta được:
\(4\overrightarrow {PI} = \overrightarrow {PA} + \overrightarrow {PB} + \overrightarrow {PC} + \overrightarrow {PD} + (\overrightarrow {AI} + \overrightarrow {BI} ) + (\overrightarrow {CI} + \overrightarrow {DI} )\)
\( \Leftrightarrow\)\({PI}=\frac{1}{4} (\overrightarrow{PA}+\overrightarrow{PB}+\overrightarrow{PC}+\overrightarrow{PD}).\)
Bài 8 trang 92 sgk hình học 11
Cho hình lăng trụ tam giác \(ABC.A'B'C'\) có \(\overrightarrow{AA'}\) = \(\overrightarrow{a}\), \(\overrightarrow{AB}\) = \(\overrightarrow{b}\), \(\overrightarrow{AC}\) = \(\overrightarrow{c}\). Hãy phân tích (hay biểu thị véctơ \(\overrightarrow{B'C}\), \(\overrightarrow{BC'}\) qua các véctơ \(\overrightarrow{a}\),\(\overrightarrow{b}\), \(\overrightarrow{c}\).
Giải
(H.3.7)

\(\overrightarrow{B'C}\) = \(\overrightarrow{B'A'}\) + \(\overrightarrow{A'A}\) + \(\overrightarrow{AC}\) = - \(\overrightarrow{b}\) - \(\overrightarrow{a}\) + \(\overrightarrow{c}\).
\(\overrightarrow{BC'}\) = \(\overrightarrow{BA}\) + \(\overrightarrow{AA'}\) + \(\overrightarrow{A'C'}\) = - \(\overrightarrow{b}\) + \(\overrightarrow{a}\) + \(\overrightarrow{c}\).
Nhận xét: ba véctơ \(\overrightarrow{a}\); \(\overrightarrow{b}\); \(\overrightarrow{c}\) ở trên gọi là bộ ba véctơ cơ sở )dùng để phân tích các véctơ khác).
Bài 9 trang 92 sgk hình học 11
Cho tam giác \(ABC\). Lấy điểm \(S\) nằm ngoài mặt phẳng \((ABC)\). Trên đoạn \(SA\) lấy điểm \(M\) sao cho \(\overrightarrow{MS}\) = \(-2\overrightarrow{MA}\) và trên đoạn \(BC\) lấy điểm \(N\) sao cho \(\overrightarrow{NB}=-\frac{1}{2}\overrightarrow{NC}.\) Chứng minh rằng ba véctơ \(\overrightarrow{AB}\), \(\overrightarrow{MN}\), \(\overrightarrow{SC}\) đồng phẳng.
Giải
(H.3.8)

\(\overrightarrow{MN}\) = \(\overrightarrow{MS}\) + \(\overrightarrow{SC}\) + \(\overrightarrow{CN}\)
= \(\frac{2}{3}\overrightarrow{AS}\) + \(\overrightarrow{SC}\) + \(\frac{2}{3}\overrightarrow{CB}.\) (1)
\(\overrightarrow{MN}\) = \(\overrightarrow{MA}\) + \(\overrightarrow{AB}\) + \(\overrightarrow{BN}\)
= \(-\frac{1}{3}\overrightarrow{AS}\) + \(\overrightarrow{AB}\) + \(-\frac{1}{3}\overrightarrow{CB}.\) (2)
Nhân (2) với 2 rồi cộng với (1) ta được:
\(3\overrightarrow{MN}\) = \(\overrightarrow{SC}\) + \(2\overrightarrow{AB}\) \(\Leftrightarrow\overrightarrow{MN}= \frac{1}{3}\overrightarrow{SC}+\frac{2}{3}\overrightarrow{AB}.\)
Vậy \(\overrightarrow{AB}\), \(\overrightarrow{MN}\), \(\overrightarrow{SC}\) đồng phẳng.
Bài 10 trang 92 sgk hình học 11
Cho hình hộp \(ABCD.EFGH\). Gọi \(K\) là giao điểm của \(AH\) và \(DE\), \(I\) là giao điểm của \(BH\) và \(DF\). Chứng minh ba véctơ \(\overrightarrow{AC}\), \(\overrightarrow{KI}\), \(\overrightarrow{FG}\) đồng phẳng.
Giải
(H.3.9) Chứng minh giá của các véctơ \(\overrightarrow{KI}\), \(\overrightarrow{FG}\) song song với mặt phẳng \((ABCD)\) chứa véctơ \(\overrightarrow{AC}\). Từ đó suy ra ba véctơ đồng phẳng.
\(I=BH\cap DF\) là giao điểm của hai đường chéo hình bình hành \(BDHF\) do đó \(I\) là trung điểm của \(BH\) (1)
\(K\) là giao điểm của hai đường chéo hình bình hành \(ADHE\) do đó \(K\) là trung điểm của \(AH\) (2)
Từ (1) và (2) suy ra \(KI\) là đường trung bình của tam giác \(ABH\). Do đó \(KI//AB\) suy ra \(KI//(ABCD)\) (*)
Ta có: \(BCGF\) là hình bình hành nên \(FG//BC\) suy ra \(FG//(ABCD)\) (2*)
Từ (*) và (2*) suy ra: \(\overrightarrow{AC}\), \(\overrightarrow{KI}\), \(\overrightarrow{FG}\) đồng phẳng.

Giaibaitap.me
Từ khóa » Giải Toán Hình Lớp 11 Trang 92
-
Giải Bài 7 Trang 92 Sgk Hình Học 11
-
Bài 4 Trang 92 SGK Hình Học 11 | SGK Toán Lớp 11
-
Giải Bài 1, 2, 3, 4, 5 Trang 91, 92 Sách Giáo Khoa Hình Học 11
-
Giải Bài 1 2 3 4 5 6 7 8 9 10 Trang 91 92 Sgk Hình Học 11
-
Giải Bài 4 Trang 92 – SGK Môn Hình Học Lớp 11 - Chữa Bài Tập
-
Giải Bài 7 Trang 92 – SGK Môn Hình Học Lớp 11 - Chữa Bài Tập
-
Giải Toán 11: Bài 7 Trang 92 SGK Hình Học 11 - TopLoigiai
-
Giải Bài Tập Trang 92 SGK Đại Số Và Giải Tích 11 - Thủ Thuật
-
Giải Bài 1,2,3,4,5 Trang 92 đại Số Giải Tích 11: Dãy Số
-
Giải Toán Lớp 11 SGK Tập 1 Trang 92 Chính Xác
-
Bài Tập 5 Trang 92 SGK Hình Học 11 - Hoc247
-
Giải Bài 10 Trang 92 SGK Toán Hình Học Lớp 11 - BAIVIET.COM
-
Toán Hình Học 11
-
Bài Tập 10 Trang 92 SGK Hình Học Lớp 11 - Bài 1 - HocTapHay