Giải Bài Tập Giải Tích 12 Hay Nhất
Có thể bạn quan tâm
- Ra mắt Sách 20 đề THPT quốc gia form 2025 toán, văn, anh.... (từ 80k/1 cuốn)
Giải bài tập Giải tích 12 hay nhất
- Giải bài tập phần Hình học 12 chi tiết
Bài giảng: Bài 1: Sự đồng biến, nghịch biến của hàm số - Thầy Trần Thế Mạnh (Giáo viên VietJack)
Với giải bài tập Toán lớp 12 phần Giải tích hay nhất được các Giáo viên nhiều năm kinh nghiệm biên soạn bám sát nội dung sách giáo khoa Giải tích 12 giúp học sinh dễ dàng làm bài tập về nhà môn Toán lớp 12. Bên cạnh đó là các bài tóm tắt lý thuyết Toán lớp 12 [có kèm video bài giảng] và bộ bài tập trắc nghiệm theo bài học có lời giải chi tiết cùng với trên 100 dạng bài tập Toán lớp 12 với đầy đủ phương pháp giải giúp bạn ôn luyện để đạt điểm cao trong các bài thi môn Toán lớp 12.
Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số
- Toán lớp 12 Bài 1: Sự đồng biến, nghịch biến của hàm số
- Toán lớp 12 Bài 2: Cực trị của hàm số
- Toán lớp 12 Bài 3: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số
- Toán lớp 12 Bài 4: Đường tiệm cận
- Toán lớp 12 Bài 5: Khảo sát sự biến thiên và vẽ đồ thị của hàm số
- Toán lớp 12 Bài ôn tập chương I
Chương 2: Hàm số lũy thừa. Hàm số mũ và hàm số logarit
- Toán lớp 12 Bài 1: Lũy thừa
- Toán lớp 12 Bài 2: Hàm số lũy thừa
- Toán lớp 12 Bài 3: Lôgarit
- Toán lớp 12 Bài 4: Hàm số mũ. Hàm số lôgarit
- Toán lớp 12 Bài 5: Phương trình mũ và phương trình lôgarit
- Toán lớp 12 Bài 6: Bất phương trình mũ và bất phương trình lôgarit
- Toán lớp 12 Bài ôn tập chương II
Chương 3: Nguyên hàm - Tích phân và ứng dụng
- Toán lớp 12 Bài 1 : Nguyên hàm
- Toán lớp 12 Bài 2 : Tích phân
- Toán lớp 12 Bài 3 : Ứng dụng của tích phân trong hình học
- Toán lớp 12 Ôn tập chương 3 giải tích 12
Chương 4: Số phức
- Toán lớp 12 Bài 1 : Số phức
- Toán lớp 12 Bài 2 : Cộng, trừ và nhân số phức
- Toán lớp 12 Bài 3 : Phép chia số phức
- Toán lớp 12 Bài 4 : Phương trình bậc hai với hệ số thực
- Toán lớp 12 Ôn tập chương 4 giải tích 12
- Toán lớp 12 Ôn tập cuối năm giải tích 12
Tài liệu lý thuyết và các dạng bài tập Toán lớp 11:
- Các dạng bài tập Giải tích lớp 12 chọn lọc
- 500 bài tập trắc nghiệm Giải tích 12 có lời giải
- Tổng hợp lý thuyết Toán lớp 12 chi tiết
Giải bài tập Toán lớp 12 Bài 1: Sự đồng biến, nghịch biến của hàm số
Trả lời câu hỏi Toán 12 Giải tích Bài 1 trang 4: Từ đồ thị (H.1, H.2) hãy chỉ ra các khoảng tăng, giảm của hàm số y = cosx trên đoạn [(-π)/2; 3π/2] và các hàm số y = |x| trên khoảng (-∞; +∞).
Lời giải:
- Hàm số y = cosx trên đoạn [(-π)/2; 3π/2]:
Các khoảng tăng: [(-π)/2,0], [π, 3π/2].
Các khoảng giảm: [0, π ],.
- Hàm số y = |x| trên khoảng (-∞; +∞)
Khoảng tăng: [0, +∞)
Khoảng giảm (-∞, 0].
Trả lời câu hỏi Toán 12 Giải tích Bài 1 trang 5: Xét các hàm số sau và đồ thị của chúng:
a) y = -x2/2 (H.4a) b) y = 1/x (H.4b)
Xét dấu đạo hàm của mỗi hàm số và điền vào bảng tương ứng.
Lời giải:
Trả lời câu hỏi Toán 12 Giải tích Bài 1 trang 7: Khẳng định ngược lại với định lí trên có đúng không ? Nói cách khác, nếu hàm số đồng biến (nghịch biến) trên K thì đạo hàm của nó có nhất thiết phải dương (âm) trên đó hay không ?
Lời giải:
Xét hàm số y = x3 có đạo hàm y’ = 3x2 ≥ 0 với mọi số thực x và hàm số đồng biến trên toàn bộ R. Vậy khẳng định ngược lại với định lý trên chưa chắc đúng hay nếu hàm số đồng biến (nghịch biến) trên K thì đạo hàm của nó không nhất thiết phải dương (âm) trên đó.
Bài 1 (trang 9 SGK Giải tích 12): Xét sự đồng biến, nghịch biến của hàm số:
a) y = 4 + 3x – x2
b)
c) y = x4 - 2x2 + 3
d) y = -x3 + x2 – 5
Lời giải:
a) Tập xác định : D = R
y' = 3 – 2x
y’ = 0 ⇔ 3 – 2x = 0 ⇔ x =
Ta có bảng biến thiên:
Vậy hàm số đồng biến trong khoảng (-∞; 3/2) và nghịch biến trong khoảng (3/2 ; + ∞).
b) Tập xác định : D = R
y' = x2 + 6x - 7
y' = 0 ⇔ x = -7 hoặc x = 1
Ta có bảng biến thiên:
Vậy hàm số đồng biến trong các khoảng (-∞ ; -7) và (1 ; +∞); nghịch biến trong khoảng (-7; 1).
c) Tập xác định: D = R
y'= 4x3 – 4x.
y' = 0 ⇔ 4x3 – 4x = 0 ⇔ 4x.(x – 1)(x + 1) = 0 ⇔
Bảng biến thiên:
Vậy hàm số nghịch biến trong các khoảng (-∞ ; -1) và (0 ; 1); đồng biến trong các khoảng (-1 ; 0) và (1; +∞).
d) Tập xác định: D = R
y'= -3x2 + 2x
y' = 0 ⇔ -3x2 + 2x = 0 ⇔ x.(-3x + 2) = 0 ⇔
Bảng biến thiên:
Vậy hàm số nghịch biến trong các khoảng (-∞ ; 0) và (2/3 ; + ∞), đồng biến trong khoảng (0 ; 2/3).
....................................
....................................
....................................
Giải bài tập Toán lớp 12 Bài 2: Cực trị của hàm số
Trả lời câu hỏi Toán 12 Giải tích Bài 2 trang 13: Dựa vào đồ thị (H.7, H.8), hãy chỉ ra các điểm tại đó mỗi hàm số sau có giá trị lớn nhất (nhỏ nhất):
a) y = -x2 + 1 trong khoảng (-∞; +∞);
b) y = x/3(x+ 3)2 trong các khoảng (1/2; 3/2) và (3/2; 4).
Lời giải:
a) Tại x = 0 hàm số có giá trị lớn nhất bằng 1.
Xét dấu đạo hàm:
b) Tại x = 1 hàm số có giá trị lớn nhất bằng 4/3.
Tại x = 3 hàm số có giá trị nhỏ nhất bằng 0.
Xét dấu đạo hàm:
Trả lời câu hỏi Toán 12 Giải tích Bài 2 trang 14: Giả sử f(x) đạt cực đại tại xo. Hãy chứng minh khẳng định 3 trong chú ý trên bằng cách xét giới hạn tỉ số khi Δx → 0 trong hai trường hợp Δx > 0 và Δx < 0.
Lời giải:
Với Δx > 0 Ta có f'(xo+ ).
Với Δx < 0 Ta có f'(xo- ).
Vậy f’(xo) = 0.
Trả lời câu hỏi Toán 12 Giải tích Bài 2 trang 14: a) Sử dụng đồ thị, hãy xem xét các hàm số sau đây có cực trị hay không.
• y = -2x + 1;
• y = x/3(x-3)2 (H.8).
b) Nêu mối quan hệ giữa sự tồn tại cực trị và dấu của đạo hàm.
Lời giải:
a,Hàm số y = -2x + 1 không có cực trị.
Hàm số y = x/3 (x-3)2 đạt cực đại tại x = 1 và đạt cực tiểu tại x = 3.
b, Nếu hàm số có cực trị thì dấu của đạo hàm bên trái và bên phải điểm cực trị sẽ khác nhau.
Trả lời câu hỏi Toán 12 Giải tích Bài 2 trang 16: Chứng minh hàm số y = |x| không có đạo hàm tại x = 0. Hàm số có đạt cực trị tại điểm đó không ?
Lời giải:
Vậy không tồn tại đạo hàm của hàm số tại x = 0.
Nhưng dựa vào đồ thị của hàm số y = |x|. Ta có hàm số đạt cực trị tại x = 0.
Trả lời câu hỏi Toán 12 Giải tích Bài 2 trang 16: Áp dụng quy tắc I, hãy tìm các điểm cực trị của hàm s f(x) = x(x^2 – 3).
Lời giải:
1. TXĐ: D = R
2. f’(x) = 3x^2 – 3. Cho f’(x) = 0 ⇔ x = 1 hoặc x = -1.
3. Ta có bảng biến thiên:
Hàm số đạt cực đại tại x = -1 và giá trị cực đại là 2
Hàm số đạt cực tiểu tại x = 1 và giá trị cực tiểu là -2.
Bài 1 (trang 18 SGK Giải tích 12): Áp dụng Quy tắc 1, hãy tìm các điểm cực trị của các hàm số sau:
a) y = 2x3 + 3x2 - 36x - 10
Lời giải:
a) TXĐ: D = R
y' = 6x2 + 6x - 36
y' = 0 ⇔ x = -3 hoặc x = 2
Bảng biến thiên:
Kết luận :
Hàm số đạt cực đại tại x = -3 ; yCĐ = 71
Hàm số đạt cực tiểu tại x = 2; yCT = -54.
b) TXĐ: D = R
y'= 4x3 + 4x = 4x(x2 + 1) = 0;
y' = 0 ⇔ x = 0
Bảng biến thiên:
Vậy hàm số đạt cực tiểu tại x = 0; yCT = -3
hàm số không có điểm cực đại.
c) TXĐ: D = R \ {0}
y' = 0 ⇔ x = ±1
Bảng biến thiên:
Vậy hàm số đạt cực đại tại x = -1; yCĐ = -2;
hàm số đạt cực tiểu tại x = 1; yCT = 2.
d) TXĐ: D = R
y'= (x3)’.(1 – x)2 + x3.[(1 – x)2]’
= 3x2.(1 – x)2 + x3.2(1 – x).(1 – x)’
= 3x2(1 – x)2 - 2x3(1 – x)
= x2.(1 – x)(3 – 5x)
y' = 0 ⇔ x = 0; x = 1 hoặc x = 3/5
Bảng biến thiên:
Vậy hàm số đạt cực đại tại x =
hàm số đạt cực tiểu tại xCT = 1.
(Lưu ý: x = 0 không phải là cực trị vì tại điểm đó đạo hàm bằng 0 nhưng đạo hàm không đổi dấu khi đi qua x = 0.)
e) Tập xác định: D = R.
Bảng biến thiên:
Vậy hàm số đạt cực tiểu tại x = 1/2.
....................................
....................................
....................................
- Tài liệu cho giáo viên: Giáo án, powerpoint, đề thi giữa kì cuối kì, đánh giá năng lực, thi thử THPT, HSG, chuyên đề, bài tập cuối tuần..... độc quyền VietJack, giá hợp lí
Sách VietJack thi THPT quốc gia 2025 cho học sinh 2k7:
- Sổ tay toán lý hóa 12 (29k/ 1 cuốn)
- Tổng ôn tốt nghiệp 12 toán, sử, địa, kinh tế pháp luật.... (80k/1 cuốn)
- 30 đề Đánh giá năng lực đại học quốc gia Hà Nội, tp. Hồ Chí Minh 2025 (cho 2k7)
ĐỀ THI, GIÁO ÁN, GÓI THI ONLINE DÀNH CHO GIÁO VIÊN VÀ PHỤ HUYNH LỚP 12
Bộ giáo án, đề thi, bài giảng powerpoint, khóa học dành cho các thầy cô và học sinh lớp 12, đẩy đủ các bộ sách cánh diều, kết nối tri thức, chân trời sáng tạo tại https://tailieugiaovien.com.vn/ . Hỗ trợ zalo VietJack Official
Từ khóa » Tích 12
-
Giải Toán 12, Giải Bài Tập Toán Lớp 12 đầy đủ Giải Tích Và Hình Học
-
Giải Tích Lớp 12 - Tech12h
-
Toán Lớp 12 | Giải Bài Tập Toán 12 Hay Nhất, Chi Tiết
-
Sách - Giải Tích 12 (cơ Bản) | Shopee Việt Nam
-
Sách - Giải Bài Tập Giải Tích 12 | Shopee Việt Nam
-
Sách Giáo Khoa Giải Tích 12 Cơ Bản
-
Giải Tích 12 – Sách PDF
-
Sách Giáo Khoa Giải Tích 12 Cơ Bản
-
Sách Giáo Khoa Giải Tích 12
-
Giải Bài Tập Toán 12 Giải Tích
-
Giải Tích 12 - Nâng Cao - Đọc Sách Miễn Phí
-
Sách Giáo Khoa đại Số Và Giải Tích 12
-
Sách Giáo Khoa Giải Tích 12 Nâng Cao - Thư Viện PDF