Giải Bài Tập Toán Lớp 8: Bài 2. Định Lí đảo Và Hệ Quả định Lí Talet

Giải Bài Tập

Giải Bài Tập, Sách Giải, Giải Toán, Vật Lý, Hóa Học, Sinh Học, Ngữ Văn, Tiếng Anh, Lịch Sử, Địa Lý

  • Home
  • Lớp 1,2,3
    • Lớp 1
    • Giải Toán Lớp 1
    • Tiếng Việt Lớp 1
    • Lớp 2
    • Giải Toán Lớp 2
    • Tiếng Việt Lớp 2
    • Văn Mẫu Lớp 2
    • Lớp 3
    • Giải Toán Lớp 3
    • Tiếng Việt Lớp 3
    • Văn Mẫu Lớp 3
    • Giải Tiếng Anh Lớp 3
  • Lớp 4
    • Giải Toán Lớp 4
    • Tiếng Việt Lớp 4
    • Văn Mẫu Lớp 4
    • Giải Tiếng Anh Lớp 4
  • Lớp 5
    • Giải Toán Lớp 5
    • Tiếng Việt Lớp 5
    • Văn Mẫu Lớp 5
    • Giải Tiếng Anh Lớp 5
  • Lớp 6
    • Soạn Văn 6
    • Giải Toán Lớp 6
    • Giải Vật Lý 6
    • Giải Sinh Học 6
    • Giải Tiếng Anh Lớp 6
    • Giải Lịch Sử 6
    • Giải Địa Lý Lớp 6
    • Giải GDCD Lớp 6
  • Lớp 7
    • Soạn Văn 7
    • Giải Bài Tập Toán Lớp 7
    • Giải Vật Lý 7
    • Giải Sinh Học 7
    • Giải Tiếng Anh Lớp 7
    • Giải Lịch Sử 7
    • Giải Địa Lý Lớp 7
    • Giải GDCD Lớp 7
  • Lớp 8
    • Soạn Văn 8
    • Giải Bài Tập Toán 8
    • Giải Vật Lý 8
    • Giải Bài Tập Hóa 8
    • Giải Sinh Học 8
    • Giải Tiếng Anh Lớp 8
    • Giải Lịch Sử 8
    • Giải Địa Lý Lớp 8
  • Lớp 9
    • Soạn Văn 9
    • Giải Bài Tập Toán 9
    • Giải Vật Lý 9
    • Giải Bài Tập Hóa 9
    • Giải Sinh Học 9
    • Giải Tiếng Anh Lớp 9
    • Giải Lịch Sử 9
    • Giải Địa Lý Lớp 9
  • Lớp 10
    • Soạn Văn 10
    • Giải Bài Tập Toán 10
    • Giải Vật Lý 10
    • Giải Bài Tập Hóa 10
    • Giải Sinh Học 10
    • Giải Tiếng Anh Lớp 10
    • Giải Lịch Sử 10
    • Giải Địa Lý Lớp 10
  • Lớp 11
    • Soạn Văn 11
    • Giải Bài Tập Toán 11
    • Giải Vật Lý 11
    • Giải Bài Tập Hóa 11
    • Giải Sinh Học 11
    • Giải Tiếng Anh Lớp 11
    • Giải Lịch Sử 11
    • Giải Địa Lý Lớp 11
  • Lớp 12
    • Soạn Văn 12
    • Giải Bài Tập Toán 12
    • Giải Vật Lý 12
    • Giải Bài Tập Hóa 12
    • Giải Sinh Học 12
    • Giải Tiếng Anh Lớp 12
    • Giải Lịch Sử 12
    • Giải Địa Lý Lớp 12
Trang ChủLớp 8Giải Bài Tập Toán 8Giải Bài Tập Toán Lớp 8 - Tập 2Bài 2. Định lí đảo và hệ quả định lí Talet Giải bài tập Toán lớp 8: Bài 2. Định lí đảo và hệ quả định lí Talet
  • Bài 2. Định lí đảo và hệ quả định lí Talet trang 1
  • Bài 2. Định lí đảo và hệ quả định lí Talet trang 2
  • Bài 2. Định lí đảo và hệ quả định lí Talet trang 3
  • Bài 2. Định lí đảo và hệ quả định lí Talet trang 4
  • Bài 2. Định lí đảo và hệ quả định lí Talet trang 5
  • Bài 2. Định lí đảo và hệ quả định lí Talet trang 6
  • Bài 2. Định lí đảo và hệ quả định lí Talet trang 7
  • Bài 2. Định lí đảo và hệ quả định lí Talet trang 8
AABC, B’ e AB, C’ e AC GT AB’AC’ B’B C’C AB AC hoặc AB AC KL B’C’//BC 2. Hệ quả của định lí Talet Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tương ứng tỉ lệ với ba cạnh của tam giác đã cho. A ’ GT KL AABC có B’C’ // BC B’ e AB; C’ e AC AB’ AB B’C’ BC : AC’ AC _ _ B , _ c ' , 1 Chú ý: Hệ quả trên vân đúng cho trường hợp đường thắng a song song với một cạnh của tam giác và cắt phần kéo dài của hai cạnh còn lại. B. HƯỚNG DẪN GIẢI BÀI TẬP 1. Bài tập mẫu Cho tứ giác ABCD, AC cắt BD tại o, vẽ OE // BC (E thuộc AB), OF // CD (F thuộc AD). Chứng minh’ EF // BD. Giải Theo giả thiết OE // BC, nên áp dụng định lí AE AO Talet cho AABC, ta có:' “7“d = w (1) AjD AvJ ,, „ " AO AF Tương tự, do OF // CD nên: (2) AL/ AU , z AE AF Từ (1) và (2), ta có: , AB AD Áp dụng định lí đảo của định lí Talet cho AABD ta có: EF // BD 2. Bai tập cơ bản 6. Tìm các cặp đường thẳng song song trong hình 3 và giải thích vì sao 8. 3. 7. Hình 14 Q p 1 ị; 1 p 1 Q Bể chia đoạn thẳng AB thành ba đoạn thẳng t : bằng nhau, người ta đã làm như hình 15. Hãy mô tả cách làm trên và giải thích vì sao các đoạn thẳng AC, CD, DB bằng nhau? Bằng cách làm tương tự, hãy chia đoạn thẳng AB cho trước thành 5 đoạn bằng nhau. Hỏi có cách nào khác với cách làm như trên mà vẫn có thể chia đoạn thẳng AB cho trước thành 5 đoạn thẳng bằng nhau? H;nb-15 Cho tam giác ABC và điểm D trên cạnh AB sao cho AD = 13,5cm, DB = 4,5cm. Tính tỉ số các khoảng cách từ các điểm D và B đến cạnh AC. Giải ổ, Trên hình 3a ta có: AP 3 AM 5 1 ' 3 1 AP^ANI _ 4— = ^:^~ = ---=- vì -7 *Tnên *77; =>PM va BC không song song PB 8 MC 15 3 8 3 PB MC * * CM 15 _ 3 MA - 5 Ta có: CN _ 21 _ o NB ■ 7 - • Trong hình 3b OA' 2 OB’ CM = CN MA " NB =>MN//AB _ 3 _ 2 OA' OB' Tacó: A'A 3’ B’B 4,5 3 A'A~B'B => A’B’ // AB Mà B"A"O = OA'B’ lại so le trong. A”B” // A’B’ Từ (1) và (2) suy ra: A”B” /7 A’B’ // AB 7. • Trong hình 4a (1) (2) Mà DE ,„T _ MD MN // EF => ^77 = 7777 EF DE - MD + ME = 9,5 + 28 = 37,5 Nên 8.37,5 600 31,58 X 37,5^ Trong hình 4b Ta có: A’B’ 1 AA’ (gt) và AB 1 AA’ (gt) A t T> ’//A V) A’O A'B' 3 4,2 => A B // AB => -T— = ---- hay - = OA AB 6 X AABO vuông tại A => OB2 = y2 = OA2 + AB2 => y2 = 62 + 8,42 => V2 = 106,56 => y ~ 10,3 8. a) Mô tả cách làm: Vẽ đoạn thẳng PQ song song với AB, PQ có độ dài bằng 3 đơn vị (dùng thước thẳng có chia khoảng) Xác định giao điểm o của hai đoạn thẳng PB và QA. Vẽ các đường thẳng EO, FO cắt AB tại c và D. Chứng minh AC = CD = DB. AOPEvà AOBD có PE//DB nên 9,5 19 DB PE opl oe’ AOEFva AODC có EF//CD nên DB CD EF OEJ => ™ mà PE = EF => DB = CD. 1E Eh A0 qp Chứng minh tương tự: —— - -Ay nên AC = CD Vậy: DB. = CD = AC , b) Tương tự chia đoạn thằng AB thành 5 đoạn bằng nhau thực hiện Vẽ 6 đường thẳng song song cách đều nhau (có thể dùng 6 đường kẻ liên tiếp trong tập viếọ Dặt đầu mút A và B ở hai đường thẳng ngoài cùng thì các đường thẳng song song cắt AB chia thành 5 phần bằng nhau. kM kN . .... B 9. Gọi DH và BK lần lượt là khoảng eách từ D và B đến cạnh AC. Ta có: DH // BK (cùng vuông góc với AC) DH AD Vậy DH BK BK AB mà AB = AD + DB => AB = 13,5 + 4,5 = 18 (cm) 13,5 _ 3 18 - 4 Vậy tỉ số các khoảng cách từ các điểm D và B đến cạnh AC bằng ỵ. 3. Bầĩ tập tương ỉự 4 Cho hình thang ABCD (AB // CD), M là trung điểm của CD. I là giao điểm của AM với BD, K là giao điểm của BM với AC. Chứng minh rằng: IK // AB Gọi E, F lần lượt là giao điểm của IK với AD và BC. Chứng minh rằng EĨ = IK = KF. LUYỆN TẬP 10. Tam giác ABC có đường cao AH. Đường thẳng d song song với BC cắt các cạnh AB, AC và đường cao AH theo thứ tự tại các điêTiĩ B’, C’ và H’ (hình 16). . , V AH’ B'c' a) Chứng minh rằng: AH BC 1 b) Áp dụng: Cho biết AH' = ^AH và diện tích tam giác ABC là 67,5cm2. Tính diện tích tam giác AB’C’ Tam giác ABC có BC = 15cm. Trên đường cao AH lấy các điểm I, K sao cho AK = KI = IH. Qua I và K vẽ các đường EF // BC, MN // BC (hình 17). Tính độ dài các đoạn thẳng MN và EF. Tính diện tích tứ giác MNFE, biết rằng diện tích của tam giác ABC là 270cm2. Có thể đo được chiều rộng của một khúc sông mà không cần phải sang bờ bên kia hay không? Người ta tiến hành đo đạc các yếu tô' hình học cần thiết để tính chiều rộng của khúc sông mà không cần phải sang bờ sông bên kia (hình 18). Nhìn hình vẽ đã cho, hãy mô tả những công việc cần làm và tính khoảng cách AB = X theo BC = a, B’C’ = a’, BB’ = h. 13. Có thể đo gián tiếp chiều cao của một bức tường khá cao bằng dụng cụ đơn giản DJ linn cmeu cao Atí tneo n, a, D. A một bức tường bằng các dụng cụ đơn giản gồm: Hình 19 14. Cho ba đoạn thẳng có độ dài là m, n, p (cùng đơn vị đo). Dựng đoạn thẳng có độ dài X sao cho: X = 9 a) — = 2 , X 2 b)- 3 c) m Hướng dẫn: Câu b) - Vẽ hai tia Ox, Oy. Trên tia Ox đặt đoạn thẳng OA = 2 đơn vị, OB = 3 đơn vị. Trên tia Oy đặt đoạn thẳng OB’ = n và xác định điểm A’ sao OA OA' CJho OB OB’ Từ đó ta có OA’ = X. Giải 10. a) Chứng minh Vì B’C y/BC => AH' BC AH B’C’ BC AB’ BC AB , " AH’ AB' Trong AABH có B’H’ // BH=> AH - 15 c AH’ Từ (1) và (2) => BC - AH (1) (2) b) B’C’ // BC mà AH 1 BC nên AH’ 1 B’C’ hay AH’ là đường cao của tam giác AB’C’. Áp dụng kết quả câu a) ta có: AH' = — AH O B’C’ BC Babc = 4^ = j=>B’C' = ỈBC AH 3 3 = ị.AH'.B'C'= ị.4 AH.-^BC 2 , .23 3 => ^AB C' AH.BC mà SAIiC = — AH.BC = 67,5cm2 2 Vậy SAQ.C. = — .67,5 — 7, 5cm“ 11. a) AABC có MN // BC MN AK _ => = "T77 (Kết quả bài tập 10) Co Ah mà AK = KI = IH AK 1 nên AH 3 MN 1 1™ 1 = 4 => MN = 4 BC = 4 • 15 = 5cm BC EF 3 AI AABC có EF // BC => =4; = A rT h)(J AH => EF = Ị.15 = 10cm 3 b) Áp dụng kết quả câu b của bài 10 ta có: Bamn = ■^•Sabc = g -270 = 30cm“ Bạef = -Babc = -270 = 120cm Do đo: SMNFE = SAEF - SAMN s“ = 120 - 30 = 90cm2 12. Mô tả each làm: Chọn một điểm A cố định bên mép bờ sông bên kia (chẳng hạn như là một thân cây), đặt hai điểm B và B’ thẳng hàng với A, điểm B sát mép bờ còn lại và AB chính là khoảng cách cần đo. Trên hai đường thảng vuông góc với AB’ tại B và B’ lấy c và C’ thẳng hàng với A. Đo độ dài các đoạn BB’ = h, BC = a, B’C’ = a’. AB BC Ta có: AB' BC X ; mà AB’ = X + h nên = — ax = ax + ah o a’x - ax = ah x(a’ - a) = ah ah X = Vậy khoảng cách AB bằng 13. a) Cách tiến hành: ah aa a’- a Đặt hai cọc thẳng đứng, di chuyển cọc 2 sao cho 3 điểm A, F, K nằm trên đường thẳng. Dùng sợi dây căng thẳng qua 2 điểm F và K để xác định điểm c trên mặt đất (3 điểm F, K, c thẳng hàng). b) AABC có AB // EF nên EF AB EC BC AB = EF.BC EC Vậy chiều cao của bức tường: AB = ah h.a V 14. a) Cách dựng: Vẽ hai tia Ox, Oy không đối nhau. Trên tia Oy đặt điểm B sao cho OB = 2 đơn vị. Lấy trung điểm M của OB. Nm Mà. Vo đường thẳng qua B và song song với MA cắt Ox tại c thì OB = 2.OM => ^ = 2 m Cách dựng: Vẽ hai tia Ox, Oy không đối nhau. Trên tia Ox đặt hai đoạn OA = 2 đơn vị, OB = 3 đơn vị. Trên tia Oy đặt đoạn thẳng OB’ = n. Nôi BB’ Vẽ đường thẳng qua A và song song với oc OA OB . OM’ BB’ cắt Oy tại A’ thì OA’ = X. n „ . * A 7/ ị.™ OA' OA Tacó AA//BB=^ = ^ X 2 hay •- = - n O Cách đựng: Vẽ tia Ox, Oy không đôi nhau. Trên tia Ox đặt đoạn OA = m, OB = n Trên tia Oy đặt đoạn OB’ - p. Vẽ đường thẳng qua A và song song o vói BB cắt Oy tại A’ thì OA’ = X. * p~ m Thật vậy: AA' // BB' —> OA _ OB X " OB' hay

Các bài học tiếp theo

  • Bài 3. Tính chất đường phân giác của tam giác
  • Bài 4. Khái niệm hai tam giác đồng dạng
  • Bài 5. Trường hợp đồng dạng thứ nhất (c. c. c)
  • Bài 6. Trường hợp đồng dạng thứ hai (c. g. c)
  • Bài 7. Trường hợp đồng dạng thứ ba (g. c. g)
  • Bài 8. Các trường hợp đồng dạng của tam giác vuông
  • Bài 9. Ứng dụng thực tế của tam giác đồng dạng
  • Ôn tập chương III
  • Bài 1. Hình hộp chữ nhật
  • Bài 2. Hình hộp chữ nhật (tiếp theo)

Các bài học trước

  • Bài 1. Định lí Talet trong tam giác
  • Ôn tập chương IV
  • Bài 5. Phương trình chứa dấu giá trị tuyệt đối
  • Bài 4. Bất phương trình bậc nhất một ẩn
  • Bài 3. Bất phương trình một ẩn
  • Bài 2. Liên hệ giữa thứ tự và phép nhân
  • Bài 1. Liên hệ giữa thứ tự và phép cộng
  • Ôn tập chương III
  • Bài 6. Giải bài toán bằng cách lập phương trình
  • Bài 5. Phương trình chứa ẩn ở mẫu

Tham Khảo Thêm

  • Giải Bài Tập Toán 8 Tập 1
  • Giải Bài Tập Toán 8 Tập 2
  • Giải Bài Tập Toán Lớp 8 - Tập 1
  • Giải Bài Tập Toán Lớp 8 - Tập 2(Đang xem)
  • Giải Toán 8 - Tập 1
  • Giải Toán 8 - Tập 2
  • Sách Giáo Khoa - Toán 8 Tập 1
  • Sách Giáo Khoa - Toán 8 Tập 2

Giải Bài Tập Toán Lớp 8 - Tập 2

  • PHẦN ĐẠI SỐ
  • Chương III. PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN
  • Bài 1. Mở đầu về phương trình
  • Bài 2. Phương trình bậc nhất một ẩn và cách giải
  • Bài 3. Phương trình đưa về dạng ax + b = 0
  • Bài 4. Phương trình tích
  • Bài 5. Phương trình chứa ẩn ở mẫu
  • Bài 6. Giải bài toán bằng cách lập phương trình
  • Ôn tập chương III
  • Chương IV. BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN
  • Bài 1. Liên hệ giữa thứ tự và phép cộng
  • Bài 2. Liên hệ giữa thứ tự và phép nhân
  • Bài 3. Bất phương trình một ẩn
  • Bài 4. Bất phương trình bậc nhất một ẩn
  • Bài 5. Phương trình chứa dấu giá trị tuyệt đối
  • Ôn tập chương IV
  • PHẦN HÌNH HỌC
  • Chương III. TAM GIÁC ĐỒNG DẠNG
  • Bài 1. Định lí Talet trong tam giác
  • Bài 2. Định lí đảo và hệ quả định lí Talet(Đang xem)
  • Bài 3. Tính chất đường phân giác của tam giác
  • Bài 4. Khái niệm hai tam giác đồng dạng
  • Bài 5. Trường hợp đồng dạng thứ nhất (c. c. c)
  • Bài 6. Trường hợp đồng dạng thứ hai (c. g. c)
  • Bài 7. Trường hợp đồng dạng thứ ba (g. c. g)
  • Bài 8. Các trường hợp đồng dạng của tam giác vuông
  • Bài 9. Ứng dụng thực tế của tam giác đồng dạng
  • Ôn tập chương III
  • Chương IV. HÌNH LĂNG TRỤ ĐỨNG. HÌNH CHÓP ĐỀU
  • A. HÌNH LĂNG TRỤ ĐỨNG
  • Bài 1. Hình hộp chữ nhật
  • Bài 2. Hình hộp chữ nhật (tiếp theo)
  • Bài 3. Thể tích của hình hộp chữ nhật
  • Bài 4. Hình lăng trụ đứng
  • Bài 5. Diện tích xung quanh của hình lăng trụ đứng
  • Bài 6. Thể tích của hình lăng trụ đứng
  • B. HÌNH CHÓP ĐỀU
  • Bài 7. Hình chóp đều và hình chóp cụt đều
  • Bài 8. Diện tích xung quanh của hình chóp đều
  • Bài 9. Thể tích của hình chóp đều
  • Ôn tập chương IV
  • Bài tập ôn cuối năm

Từ khóa » định Lý Và Hệ Quả Talet Toán 8