Giải Phương Trình Sin^2 2x Cos^2 3x=1 - Hoc24

HOC24

Lớp học Học bài Hỏi bài Giải bài tập Đề thi ĐGNL Tin tức Cuộc thi vui Khen thưởng
  • Tìm kiếm câu trả lời Tìm kiếm câu trả lời cho câu hỏi của bạn
Đóng Đăng nhập Đăng ký

Lớp học

  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Lớp 2
  • Lớp 1

Môn học

  • Toán
  • Vật lý
  • Hóa học
  • Sinh học
  • Ngữ văn
  • Tiếng anh
  • Lịch sử
  • Địa lý
  • Tin học
  • Công nghệ
  • Giáo dục công dân
  • Tiếng anh thí điểm
  • Đạo đức
  • Tự nhiên và xã hội
  • Khoa học
  • Lịch sử và Địa lý
  • Tiếng việt
  • Khoa học tự nhiên
  • Hoạt động trải nghiệm
  • Hoạt động trải nghiệm, hướng nghiệp
  • Giáo dục kinh tế và pháp luật

Chủ đề / Chương

Bài học

HOC24

Khách Khách vãng lai Đăng nhập Đăng ký Khám phá Hỏi đáp Đề thi Tin tức Cuộc thi vui Khen thưởng

Tuyển Cộng tác viên Hoc24 nhiệm kì 28 tại đây: https://forms.gle/GrfwFgzveoKLVv3p6

  • Tất cả
  • Toán
  • Vật lý
  • Hóa học
  • Sinh học
  • Ngữ văn
  • Tiếng anh
  • Lịch sử
  • Địa lý
  • Tin học
  • Công nghệ
  • Giáo dục công dân
  • Tiếng anh thí điểm
  • Hoạt động trải nghiệm, hướng nghiệp
  • Giáo dục kinh tế và pháp luật
Hãy tham gia nhóm Học sinh Hoc24OLM Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Câu hỏi

Hủy Xác nhận phù hợp Chọn lớp Tất cả Lớp 12 Lớp 11 Lớp 10 Lớp 9 Lớp 8 Lớp 7 Lớp 6 Lớp 5 Lớp 4 Lớp 3 Lớp 2 Lớp 1 Môn học Toán Vật lý Hóa học Sinh học Ngữ văn Tiếng anh Lịch sử Địa lý Tin học Công nghệ Giáo dục công dân Tiếng anh thí điểm Đạo đức Tự nhiên và xã hội Khoa học Lịch sử và Địa lý Tiếng việt Khoa học tự nhiên Hoạt động trải nghiệm Hoạt động trải nghiệm, hướng nghiệp Giáo dục kinh tế và pháp luật Mới nhất Mới nhất Chưa trả lời Câu hỏi hay Thanh Vân Thanh Vân 14 tháng 2 2017 lúc 14:35

giải phương trình

sin^2 2x+cos^2 3x=1

Lớp 11 Toán Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GI... Những câu hỏi liên quan Phạm Trần Phát
  • Phạm Trần Phát
5 tháng 9 2023 lúc 20:50

Giải phương trình:

1) \(cos\left(2x + \dfrac{\pi}{6}\right) = cos\left(\dfrac{\pi}{3} - 3x\right)\) 

2) \(sin\left(2x + \dfrac{\pi}{6}\right) = sin\left(\dfrac{\pi}{3} - 3x\right)\)

 

Xem chi tiết Lớp 11 Toán Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GI... 2 0 Khách Gửi Hủy Nguyễn Lê Phước Thịnh Nguyễn Lê Phước Thịnh CTV 5 tháng 9 2023 lúc 21:41

1: cos(2x+pi/6)=cos(pi/3-3x)

=>2x+pi/6=pi/3-3x+k2pi hoặc 2x+pi/6=3x-pi/3+k2pi

=>5x=pi/6+k2pi hoặc -x=-1/2pi+k2pi

=>x=pi/30+k2pi/5 hoặc x=pi-k2pi

2: sin(2x+pi/6)=sin(pi/3-3x)

=>2x+pi/6=pi/3-3x+k2pi hoặc 2x+pi/6=pi-pi/3+3x+k2pi

=>5x=pi/6+k2pi hoặc -x=2/3pi-pi/6+k2pi

=>x=pi/30+k2pi/5 hoặc x=-1/2pi-k2pi

Đúng 1 Bình luận (1) Khách Gửi Hủy Nguyễn Đức Trí Nguyễn Đức Trí 6 tháng 9 2023 lúc 13:49

1) \(cos\left(2x+\dfrac{\pi}{6}\right)=cos\left(\dfrac{\pi}{3}-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{\pi}{6}=\dfrac{\pi}{3}-3x+k2\pi\\2x+\dfrac{\pi}{6}=-\dfrac{\pi}{3}+3x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{\pi}{3}-\dfrac{\pi}{6}+k2\pi\\3x-2x=\dfrac{\pi}{3}+\dfrac{\pi}{6}-k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{\pi}{2}-k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{30}+\dfrac{k2\pi}{5}\\x=\dfrac{\pi}{2}-k2\pi\end{matrix}\right.\) \(\left(k\in N\right)\)

Đúng 1 Bình luận (1) Khách Gửi Hủy Quoc Tran Anh Le
  • Bài 12
SGK Cánh Diều trang 41 21 tháng 9 2023 lúc 16:06

Giải các phương trình sau:

a)     \(\sin \left( {2x - \frac{\pi }{6}} \right) =  - \frac{{\sqrt 3 }}{2}\)

b)     \(\cos \left( {\frac{{3x}}{2} + \frac{\pi }{4}} \right) = \frac{1}{2}\)

c)     \(\sin 3x - \cos 5x = 0\)

d)     \({\cos ^2}x = \frac{1}{4}\)

e)     \(\sin x - \sqrt 3 \cos x = 0\)

f)      \(\sin x + \cos x = 0\)

Xem chi tiết Lớp 11 Toán Bài tập cuối chương 1 2 0 Khách Gửi Hủy Hà Quang Minh Hà Quang Minh Giáo viên CTVVIP 21 tháng 9 2023 lúc 16:08

a)      

\(\begin{array}{l}\sin \left( {2x - \frac{\pi }{6}} \right) =  - \frac{{\sqrt 3 }}{2}\\ \Leftrightarrow \sin \left( {2x - \frac{\pi }{6}} \right) = \sin \left( { - \frac{\pi }{3}} \right)\end{array}\)

\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}2x - \frac{\pi }{6} =  - \frac{\pi }{3} + k2\pi \\2x - \frac{\pi }{6} = \pi  + \frac{\pi }{3} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}2x =  - \frac{\pi }{6} + k2\pi \\2x = \frac{{3\pi }}{2} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{\pi }{{12}} + k\pi \\x = \frac{{3\pi }}{4} + k\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

b)     \(\begin{array}{l}\cos \left( {\frac{{3x}}{2} + \frac{\pi }{4}} \right) = \frac{1}{2}\\ \Leftrightarrow \cos \left( {\frac{{3x}}{2} + \frac{\pi }{4}} \right) = \cos \frac{\pi }{3}\end{array}\)

\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}\frac{{3x}}{2} + \frac{\pi }{4} = \frac{\pi }{3} + k2\pi \\\frac{{3x}}{2} + \frac{\pi }{4} = \frac{{ - \pi }}{3} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{18}} + \frac{{k4\pi }}{3}\\x = \frac{{ - 7\pi }}{{18}} + \frac{{k4\pi }}{3}\end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)

c)       

\(\begin{array}{l}\sin 3x - \cos 5x = 0\\ \Leftrightarrow \sin 3x = \cos 5x\\ \Leftrightarrow \cos 5x = \cos \left( {\frac{\pi }{2} - 3x} \right)\\ \Leftrightarrow \left[ \begin{array}{l}5x = \frac{\pi }{2} - 3x + k2\pi \\5x =  - \left( {\frac{\pi }{2} - 3x} \right) + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}8x = \frac{\pi }{2} + k2\pi \\2x =  - \frac{\pi }{2} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{16}} + \frac{{k\pi }}{4}\\x =  - \frac{\pi }{4} + k\pi \end{array} \right.\end{array}\)

Đúng 0 Bình luận (0) Khách Gửi Hủy Hà Quang Minh Hà Quang Minh Giáo viên CTVVIP 21 tháng 9 2023 lúc 16:08

d)      

\(\begin{array}{l}{\cos ^2}x = \frac{1}{4}\\ \Leftrightarrow \left[ \begin{array}{l}\cos x = \frac{1}{2}\\\cos x =  - \frac{1}{2}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\cos x = \cos \frac{\pi }{3}\\\cos x = \cos \frac{{2\pi }}{3}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x =  - \frac{\pi }{3} + k2\pi \end{array} \right.\\\left[ \begin{array}{l}x = \frac{{2\pi }}{3} + k2\pi \\x =  - \frac{{2\pi }}{3} + k2\pi \end{array} \right.\end{array} \right.\end{array}\)

e)      

\(\begin{array}{l}\sin x - \sqrt 3 \cos x = 0\\ \Leftrightarrow \frac{1}{2}\sin x - \frac{{\sqrt 3 }}{2}\cos x = 0\\ \Leftrightarrow \cos \frac{\pi }{3}.\sin x - \sin \frac{\pi }{3}.\cos x = 0\\ \Leftrightarrow \sin \left( {x - \frac{\pi }{3}} \right) = 0\\ \Leftrightarrow \sin \left( {x - \frac{\pi }{3}} \right) = \sin 0\\ \Leftrightarrow x - \frac{\pi }{3} = k\pi ;k \in Z\\ \Leftrightarrow x = \frac{\pi }{3} + k\pi ;k \in Z\end{array}\)

f)       

\(\begin{array}{l}\sin x + \cos x = 0\\ \Leftrightarrow \frac{{\sqrt 2 }}{2}\sin x + \frac{{\sqrt 2 }}{2}\cos x = 0\\ \Leftrightarrow \cos \frac{\pi }{4}.\sin x + \sin \frac{\pi }{4}.\cos x = 0\\ \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = 0\\ \Leftrightarrow \sin \left( {x + \frac{\pi }{4}} \right) = \sin 0\\ \Leftrightarrow x + \frac{\pi }{4} = k\pi ;k \in Z\\ \Leftrightarrow x =  - \frac{\pi }{4} + k\pi ;k \in Z\end{array}\)

Đúng 0 Bình luận (0) Khách Gửi Hủy Nguyên Nguyên
  • Nguyên Nguyên
5 tháng 9 2021 lúc 18:08

1,Giải phương trình:

a,\(cos^3x+sin^3x=cos2x\)

b,\(cos^3x+sin^3x=2sin2x+sinx+cosx\)

c,\(2cos^3x=sin3x\)

d,\(cos^2x-\sqrt{3}sin2x=1+sin^2x\)

e,\(cos^3x+sin^3x=2\left(cos^5x+sin^5x\right)\)

Xem chi tiết Lớp 11 Toán Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GI... 1 0 Khách Gửi Hủy Ngô Thành Chung Ngô Thành Chung 5 tháng 9 2021 lúc 20:33

a, (sinx + cosx)(1 - sinx . cosx) = (cosx - sinx)(cosx + sinx)

⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx-sinx=1-sinx.cosx\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx+sinx.cosx-1-sinx=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\\left(cosx-1\right)\left(sinx+1\right)=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}sin\left(x+\dfrac{\pi}{4}\right)=0\\cosx=1\\sinx=-1\end{matrix}\right.\)

b, (sinx + cosx)(1 - sinx . cosx) = 2sin2x + sinx + cosx

⇔ (sinx + cosx)(1 - sinx.cosx - 1) = 2sin2x

⇔ (sinx + cosx).(- sinx . cosx) = 2sin2x

⇔ 4sin2x + (sinx + cosx) . sin2x = 0

⇔ \(\left[{}\begin{matrix}sin2x=0\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+4=0\end{matrix}\right.\)

⇔ sin2x = 0

c, 2cos3x = sin3x

⇔ 2cos3x = 3sinx - 4sin3x

⇔ 4sin3x + 2cos3x - 3sinx(sin2x + cos2x) = 0

⇔ sin3x + 2cos3x - 3sinx.cos2x = 0

Xét cosx = 0 : thay vào phương trình ta được sinx = 0. Không có cung x nào có cả cos và sin = 0 nên cosx = 0 không thỏa mãn phương trình

Xét cosx ≠ 0 chia cả 2 vế cho cos3x ta được : 

tan3x + 2 - 3tanx = 0

⇔ \(\left[{}\begin{matrix}tanx=1\\tanx=-2\end{matrix}\right.\)

d, cos2x - \(\sqrt{3}sin2x\) = 1 + sin2x

⇔ cos2x - sin2x - \(\sqrt{3}sin2x\) = 1

⇔ cos2x - \(\sqrt{3}sin2x\) = 1

⇔ \(2cos\left(2x+\dfrac{\pi}{3}\right)=1\)

⇔ \(cos\left(2x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}=cos\dfrac{\pi}{3}\)

e, cos3x + sin3x = 2cos5x + 2sin5x

⇔ cos3x (1 - 2cos2x) + sin3x (1 - 2sin2x) = 0

⇔ cos3x . (- cos2x) + sin3x . cos2x = 0

⇔ \(\left[{}\begin{matrix}sin^3x=cos^3x\\cos2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}sinx=cosx\\cos2x=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\cos2x=0\end{matrix}\right.\)

Đúng 1 Bình luận (0) Khách Gửi Hủy Quoc Tran Anh Le
  • Bài 1.34
SGK Kết nối tri thức với cuộc sống trang 41 21 tháng 9 2023 lúc 23:14

Giải các phương trình sau:

a) \(\cos \left( {3x - \frac{\pi }{4}} \right) =  - \frac{{\sqrt 2 }}{2}\);        

b) \(2{\sin ^2}x - 1 + \cos 3x = 0\);        

c) \(\tan \left( {2x + \frac{\pi }{5}} \right) = \tan \left( {x - \frac{\pi }{6}} \right)\).

Xem chi tiết Lớp 11 Toán Bài tập cuối chương 1 1 0 Khách Gửi Hủy Hà Quang Minh Hà Quang Minh Giáo viên CTVVIP 21 tháng 9 2023 lúc 23:17

a) \(\cos \left( {3x - \frac{\pi }{4}} \right) =  - \frac{{\sqrt 2 }}{2}\;\;\;\; \Leftrightarrow \cos \left( {3x - \frac{\pi }{4}} \right) = \cos \frac{{3\pi }}{4}\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{3x - \frac{\pi }{4} = \frac{{3\pi }}{4} + k2\pi }\\{3x - \frac{\pi }{4} =  - \frac{{3\pi }}{4} + k2\pi }\end{array}} \right.\;\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{3x = \pi  + k2\pi }\\{3x =  - \frac{\pi }{2} + k2\pi }\end{array}} \right.\)

\( \Leftrightarrow \;\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + \frac{{k2\pi }}{3}}\\{x =  - \frac{\pi }{6} + \frac{{k2\pi }}{3}}\end{array}} \right.\;\;\left( {k \in \mathbb{Z}} \right)\)

b) \(2{\sin ^2}x - 1 + \cos 3x = 0\;\;\;\;\; \Leftrightarrow \cos 2x + \cos 3x = 0\;\; \Leftrightarrow 2\cos \frac{{5x}}{2}\cos \frac{x}{2} = 0\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos \frac{{5x}}{2} = 0}\\{\cos \frac{x}{2} = 0}\end{array}} \right.\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\frac{{5x}}{2} = \frac{\pi }{2} + k\pi }\\{\frac{{5x}}{2} =  - \frac{\pi }{2} + k\pi }\\{\frac{x}{2} = \frac{\pi }{2} + k\pi }\\{\frac{x}{2} =  - \frac{\pi }{2} + k\pi }\end{array}} \right.\;\;\;\;\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{5} + \frac{{k2\pi }}{5}}\\{x =  - \frac{\pi }{5} + \frac{{k2\pi }}{5}}\\{x = \pi  + k2\pi }\\{x =  - \pi  + k2\pi }\end{array}} \right.\;\;\;\left( {k \in \mathbb{Z}} \right)\)

c) \(\tan \left( {2x + \frac{\pi }{5}} \right) = \tan \left( {x - \frac{\pi }{6}} \right)\;\; \Leftrightarrow 2x + \frac{\pi }{5} = x - \frac{\pi }{6} + k\pi \;\;\; \Leftrightarrow x =  - \frac{{11\pi }}{{30}} + k\pi \;\;\left( {k \in \mathbb{Z}} \right)\)

Đúng 0 Bình luận (0) Khách Gửi Hủy Sonyeondan Bangtan
  • Sonyeondan Bangtan
20 tháng 9 2021 lúc 20:44

1. Giải các phương trình sau:

a) \(\cos\left(x+15^0\right)=\dfrac{2}{5}\)

b) \(\cot\left(2x-10^0\right)=4\)

c) \(\cos\left(x+12^0\right)+\sin\left(78^0-x\right)=1\)

2. Định m để các phương trình sau có nghiệm: 

\(\sin\left(3x-27^0\right)=2m^2+m\)

Xem chi tiết Lớp 11 Toán Bài 2: Phương trình lượng giác cơ bản 3 0 Khách Gửi Hủy Nguyễn Việt Lâm Nguyễn Việt Lâm CTV 20 tháng 9 2021 lúc 21:14

c.

\(\Leftrightarrow cos\left(x+12^0\right)+cos\left(90^0-78^0+x\right)=1\)

\(\Leftrightarrow2cos\left(x+12^0\right)=1\)

\(\Leftrightarrow cos\left(x+12^0\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+12^0=60^0+k360^0\\x+12^0=-60^0+k360^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=48^0+k360^0\\x=-72^0+k360^0\end{matrix}\right.\)

2.

Do \(-1\le sin\left(3x-27^0\right)\le1\) nên pt có nghiệm khi:

\(\left\{{}\begin{matrix}2m^2+m\ge-1\\2m^2+m\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2m^2+m+1\ge0\left(luôn-đúng\right)\\2m^2+m-1\le0\end{matrix}\right.\)

\(\Rightarrow-1\le m\le\dfrac{1}{2}\)

Đúng 2 Bình luận (0) Khách Gửi Hủy Nguyễn Việt Lâm Nguyễn Việt Lâm CTV 20 tháng 9 2021 lúc 21:11

a.

\(\Rightarrow\left[{}\begin{matrix}x+15^0=arccos\left(\dfrac{2}{5}\right)+k360^0\\x+15^0=-arccos\left(\dfrac{2}{5}\right)+k360^0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-15^0+arccos\left(\dfrac{2}{5}\right)+k360^0\\x=-15^0-arccos\left(\dfrac{2}{5}\right)+k360^0\end{matrix}\right.\)

b.

\(2x-10^0=arccot\left(4\right)+k180^0\)

\(\Rightarrow x=5^0+\dfrac{1}{2}arccot\left(4\right)+k90^0\)

Đúng 1 Bình luận (0) Khách Gửi Hủy Hồng Phúc Hồng Phúc 20 tháng 9 2021 lúc 21:15

2.

Phương trình \(sin\left(3x-27^o\right)=2m^2+m\) có nghiệm khi:

\(2m^2+m\in\left[-1;1\right]\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m^2+m\le1\\2m^2+m\ge-1\end{matrix}\right.\)

\(\Leftrightarrow\left(m+1\right)\left(2m-1\right)\le0\)

\(\Leftrightarrow-1\le m\le\dfrac{1}{2}\)

Đúng 1 Bình luận (0) Khách Gửi Hủy Quoc Tran Anh Le
  • Bài 1.20
SGK Kết nối tri thức với cuộc sống trang 39 21 tháng 9 2023 lúc 23:08

Giải các phương trình sau:

a) \(\sin 2x + \cos 4x = 0\);                 b) \(\cos 3x =  - \cos 7x\)

Xem chi tiết Lớp 11 Toán Bài 4. Phương trình lượng giác cơ bản 1 0 Khách Gửi Hủy Hà Quang Minh Hà Quang Minh Giáo viên CTVVIP 21 tháng 9 2023 lúc 23:11

a) \(\sin 2x + 1 - 2{\sin ^2}2x = 0\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\sin 2x = 1}\\{\sin 2x =  - \frac{1}{2}}\end{array}\;\;\;} \right. \Leftrightarrow \;\left[ {\begin{array}{*{20}{c}}{\sin 2x = \sin \frac{\pi }{2}}\\{\sin 2x = \sin  - \frac{\pi }{6}}\end{array}} \right.\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x = \frac{\pi }{2} + k2\pi }\\{2x =  - \frac{\pi }{6} + k2\pi }\\{2x = \pi  + \frac{\pi }{6} + k2\pi }\end{array}} \right.\;\;\)

\( \Leftrightarrow \;\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{4} + k2\pi }\\{x =  - \frac{\pi }{{12}} + k\pi }\\{x = \frac{{7\pi }}{{12}} + k\pi }\end{array}} \right.\;\;\left( {k \in \mathbb{Z}} \right)\)

b) \(\cos 3x =  - \cos 7x\; \Leftrightarrow \cos 3x + \cos 7x = 0\;\; \Leftrightarrow 2\cos 5x\cos 2x = 0\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos 5x = 0}\\{\cos 2x = 0\;}\end{array}} \right.\;\;\)

\( \Leftrightarrow \left[ \begin{array}{l}\cos 5x = \cos \frac{\pi }{2}\\\cos 2x = \cos \frac{\pi }{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}5x = \frac{\pi }{2} + k2\pi \\5x =  - \frac{\pi }{2} + k2\pi \\2x = \frac{\pi }{2} + k2\pi \\2x =  - \frac{\pi }{2} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{10}} + \frac{{k2\pi }}{5}\\x =  - \frac{\pi }{{10}} + \frac{{k2\pi }}{5}\\x = \frac{\pi }{4} + k\pi \\x =  - \frac{\pi }{4} + k\pi \end{array} \right.;k \in Z\)

Đúng 0 Bình luận (0) Khách Gửi Hủy Quoc Tran Anh Le
  • Bài 2
SGK Cánh Diều trang 40 21 tháng 9 2023 lúc 16:01

Giải phương trình

a)     \(\sin \left( {2x + \frac{\pi }{4}} \right) = \sin x\)

b)     \(\sin 2x = \cos 3x\)

c)     \({\cos ^2}2x = {\cos ^2}\left( {x + \frac{\pi }{6}} \right)\)

Xem chi tiết Lớp 11 Toán Bài 4. Phương trình lượng giác cơ bản 1 0 Khách Gửi Hủy Hà Quang Minh Hà Quang Minh Giáo viên CTVVIP 21 tháng 9 2023 lúc 16:03

a)

\(\sin \left( {2x + \frac{\pi }{4}} \right) = \sin x \Leftrightarrow \left[ \begin{array}{l}2x + \frac{\pi }{4} = x + k2\pi \\2x + \frac{\pi }{4} = \pi  - x + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{\pi }{4} + k2\pi \\3x = \pi  - \frac{\pi }{4} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{\pi }{4} + k2\pi \\x = \frac{\pi }{4} + \frac{{k2\pi }}{3}\end{array} \right.;k \in Z\)

b)

\(\begin{array}{l}\sin 2x = \cos 3x\\ \Leftrightarrow \cos 3x = \cos \left( {\frac{\pi }{2} - 2x} \right)\\ \Leftrightarrow \left[ \begin{array}{l}3x = \frac{\pi }{2} - 2x + k2\pi \\3x =  - \left( {\frac{\pi }{2} - 2x} \right) + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}5x = \frac{\pi }{2} + k2\pi \\x =  - \frac{\pi }{2} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{10}} + \frac{{k2\pi }}{5}\\x =  - \frac{\pi }{2} + k2\pi \end{array} \right.\end{array}\)

c)

\(\begin{array}{l}{\cos ^2}2x = {\cos ^2}\left( {x + \frac{\pi }{6}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}\cos 2x = \cos \left( {x + \frac{\pi }{6}} \right)\\\cos 2x =  - \cos \left( {x + \frac{\pi }{6}} \right)\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\cos 2x = \cos \left( {x + \frac{\pi }{6}} \right)\\\cos 2x = \cos \left( {\pi  - \left( {x + \frac{\pi }{6}} \right)} \right)\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\cos 2x = \cos \left( {x + \frac{\pi }{6}} \right)\\\cos 2x = \cos \left( {\frac{{5\pi }}{6} - x} \right)\end{array} \right.\end{array}\)

Với \(\cos 2x = \cos \left( {x + \frac{\pi }{6}} \right) \Leftrightarrow \left[ \begin{array}{l}2x =  - \left( {x + \frac{\pi }{6}} \right) + k2\pi \\2x = x + \frac{\pi }{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}3x =  - \frac{\pi }{6} + k2\pi \\x = \frac{\pi }{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x =  - \frac{\pi }{{18}} + \frac{{k2\pi }}{3}\\x = \frac{\pi }{6} + k2\pi \end{array} \right.\)

Với \(\cos 2x = \cos \left( {\frac{{5\pi }}{6} - x} \right) \Leftrightarrow \left[ \begin{array}{l}2x = \frac{{5\pi }}{6} - x + k2\pi \\2x =  - \left( {\frac{{5\pi }}{6} - x} \right) + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}3x = \frac{{5\pi }}{6} + k2\pi \\x =  - \frac{{5\pi }}{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{{5\pi }}{{18}} + \frac{{k2\pi }}{3}\\x =  - \frac{{5\pi }}{6} + k2\pi \end{array} \right.\)

Đúng 0 Bình luận (0) Khách Gửi Hủy Mai Anh
  • Mai Anh
30 tháng 7 2021 lúc 9:09

Giải phương trình:

\(Sin^3x+Cos^3x+1=\dfrac{3}{2}Sin2x\)

Xem chi tiết Lớp 11 Toán Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GI... 1 0 Khách Gửi Hủy Nguyễn Việt Lâm Nguyễn Việt Lâm CTV 30 tháng 7 2021 lúc 13:55

\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)+1=3sinx.cosx\)

Đặt \(sinx+cosx=t\Rightarrow\left|t\right|\le\sqrt{2}\)

\(t^2=1+2sinx.cosx\Rightarrow sinx.cosx=\dfrac{t^2-1}{2}\)

Phương trình trở thành:

\(t\left(1-\dfrac{t^2-1}{2}\right)+1=\dfrac{3}{2}\left(t^2-1\right)\)

\(\Leftrightarrow t^3+3t^2-3t-5=0\)

\(\Leftrightarrow\left(t+1\right)\left(t^2+2t-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=-1-\sqrt{6}\left(loại\right)\\t=-1+\sqrt{6}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=-1\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=-\dfrac{\pi}{4}+k2\pi\\x+\dfrac{\pi}{4}=\dfrac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

Đúng 0 Bình luận (0) Khách Gửi Hủy Trần Tuệ Nhi
  • Trần Tuệ Nhi
2 tháng 8 2019 lúc 16:26

Giải các phương trình sau:

\(5\sin^22x-6\sin4x-2\cos^2x=0\)

\(2\sin^23x-10\sin6x-\cos^23x=-2\)

\(\sin^2x\left(\tan x+1\right)=3\sin x\left(\cos x-\sin x\right)+3\)

\(6\sin x-2\cos^3x=\frac{5\sin4x.\cos x}{2\cos2x}\)

 

Xem chi tiết Lớp 11 Toán Câu hỏi của OLM 0 0 Khách Gửi Hủy Sách Giáo Khoa
  • Bài 3.5
SBT trang 36 10 tháng 4 2017 lúc 9:32

Giải các phương trình sau :

a) \(\cos^2x+2\sin x\cos x+5\sin^2x=2\)

b) \(3\cos^2x-2\sin2x+\sin^2x=1\)

c) \(4\cos^2x-3\sin x\cos x+3\sin^2x=1\)

Xem chi tiết Lớp 11 Toán Bài 3: Một số phương trình lượng giác thường gặp 1 0 Khách Gửi Hủy Nguyen Thuy Hoa Nguyen Thuy Hoa 17 tháng 5 2017 lúc 16:48

Phương trình đưa về đa thức của một hàm lượng giác

Phương trình đưa về đa thức của một hàm lượng giác

Đúng 0 Bình luận (0) Khách Gửi Hủy

Khoá học trên OLM (olm.vn)

  • Toán lớp 11 (Kết nối tri thức với cuộc sống)
  • Toán lớp 11 (Cánh Diều)
  • Toán lớp 11 (Chân trời sáng tạo)
  • Ngữ văn lớp 11
  • Tiếng Anh lớp 11 (i-Learn Smart World)
  • Tiếng Anh lớp 11 (Global Success)
  • Vật lý lớp 11 (Kết nối tri thức với cuộc sống)
  • Vật lý lớp 11 (Cánh diều)
  • Hoá học lớp 11 (Kết nối tri thức với cuộc sống)
  • Hoá học lớp 11 (Cánh diều)
  • Sinh học lớp 11 (Kết nối tri thức với cuộc sống)
  • Sinh học lớp 11 (Cánh diều)
  • Lịch sử lớp 11 (Kết nối tri thức với cuộc sống)
  • Lịch sử lớp 11 (Cánh diều)
  • Địa lý lớp 11 (Kết nối tri thức với cuộc sống)
  • Địa lý lớp 11 (Cánh diều)
  • Giáo dục kinh tế và pháp luật lớp 11 (Kết nối tri thức với cuộc sống)
  • Tin học lớp 11 (Kết nối tri thức với cuộc sống)
  • Công nghệ lớp 11 (Kết nối tri thức với cuộc sống)

Từ khóa » Sin Bình 2x + Cos Bình 3x = 1