Giải Sách Bài Tập Toán 11 Tập 1 Trang 22, 23 Chính Xác

Nội dung bài viết

  1. Giải bài 1 Toán 11 Đại số và Giải tích trang 22 SBT
  2. Giải bài 2 Đại số và Giải tích trang 22 SBT Toán 11
  3. Giải bài 3 Đại số và Giải tích trang 23 Toán 11 SBT
  4. Giải bài 4 trang 23 Toán 11 SBT Đại số và Giải tích
  5. Giải bài 5 trang 23 Toán 11 Đại số và Giải tích SBT
  6. Giải bài 6 trang 23 Đại số và Giải tích Toán 11 SBT

Giải SBT Toán 11 bài 2: Phương trình lượng giác cơ bản, chắc chắn nội dung tài liệu sẽ là nguồn thông tin hữu ích để giúp các bạn học sinh có kết quả cao hơn trong học tập. Mời thầy cô và các bạn học sinh cùng tham khảo.

Giải bài 1 Toán 11 Đại số và Giải tích trang 22 SBT

Giải các phương trình

a) sin3x = −√3/2

b) sin(2x − 15o) = √2/2

c) sin(x/2 + 10o) = −1/2

d) sin4x = 2/3

Giải:

a) x = −π/9 + k.2π/3, k ∈ Z và x = 4π/9 + k.2π/3, k∈Z

b) x = 30o + k.180o, k∈Z và x = 75o + k180o, k∈Z

c) x = −80o + k720o, k∈Z và x = 400o + k720o, k∈Z

d) x = 1/4arcsin2/3 + k.π/2, k∈Z và x = π/4 − 1/4arcsin2/3 + k.π/2, k∈Z

Giải bài 2 Đại số và Giải tích trang 22 SBT Toán 11

Giải các phương trình

a) cos(x+3) = 1/3

b) cos(3x−45o) = √3/2

c) cos(2x+π/3) = −1/2

d) (2+cosx)(3cos2x−1) = 0

Giải:

a) x = −3 ± arccos1/3 + k2π, k∈Z

b) x = 25o + k120o, x = 5o + k120o, k∈Z

c) x = π/6 + kπ, x = −π/2 + kπ, k∈Z

d) x = ±1/2arccos1/3 + kπ, k∈Z

Giải bài 3 Đại số và Giải tích trang 23 Toán 11 SBT

Giải các phương trình

a) tan(2x+45o) = −1

b) cot(x+π/3) = √3

c) tan(x/2−π/4) = tanπ/8

d) cot(x/3+20o) = −√3/3

Giải:

a) x = −45o + k90o, k∈Z

b) x = −π/6 + kπ, k∈Z

c) x = 3π/4 + k2π, k∈Z

d) x = 300o + k540o, k∈Z

Giải bài 4 trang 23 Toán 11 SBT Đại số và Giải tích

Giải các phương trình:

a) sin3x/cos3x − 1 = 0

b) cos2xcot(x−π/4) = 0

c) tan(2x+60o)cos(x+75o) = 0

d) (cotx+1)sin3x = 0

Giải:

a) Điều kiện: cos3x ≠ 1. Ta có:

sin3x = 0 ⇒ 3x = kπ. Do điều kiện, các giá trị k = 2m, m ∈ Z bị loại nên 3x = (2m + 1)π. Vậy nghiệm của phương trình là x = (2m+1)π/3, m∈Z

b) Điều kiện: sin(x−π/4)≠0. Biến đổi phương trình:

cos2x.cot(x−π/4)=0⇒cos2x.cos(x−π/4)=0

Giải SBT Toán 11 bài 2: Phương trình lượng giác cơ bản

Do điều kiện, các giá trị x = π/4 + 2m.π/2, m ∈ bị loại. Vậy nghiệm của phương trình là:

x = π/4 + (2m+1)π/2, m∈Z và x = 3π/4 + kπ, k∈Z

c) Điều kiện:

cos(2x+60o) ≠ 0

tan(2x+60o)cos(x+75o) = 0

⇒sin(2x+60o)cos(x+75o) = 0

Giải SBT Toán 11 bài 2: Phương trình lượng giác cơ bản

Do điều kiện ở trên, các giá trị x = 15o + k180o, k∈Z bị loại.

Vậy nghiệm của phương trình là: x = −30o + k90o, k∈Z

d) Điều kiện: sinx ≠ 0. Ta có:

(cotx+1)sin3x = 0

Giải SBT Toán 11 bài 2: Phương trình lượng giác cơ bản

Do điều kiện sinx ≠0 nên những giá trị x = k.π/3 và k = 3m, m∈Z bị loại.

Vậy nghiệm của phương trình là:

x = −π/4 + kπ; x = π/3 + kπ và x = 2π/3 + kπ, k∈Z

Giải bài 5 trang 23 Toán 11 Đại số và Giải tích SBT

Tìm những giá trị của x để giá trị của các hàm số tương ứng sau bằng nhau

Giải SBT Toán 11 bài 2: Phương trình lượng giác cơ bản

Giải:

a)

Giải SBT Toán 11 bài 2: Phương trình lượng giác cơ bản

Vậy các giá trị cần tìm là: x = 5π/24 + kπ, k∈Z và x = 13π/48 + k.π/2, k∈Z

c)

tan(2x+π/3) = tan(π/5−x)

⇔ cos(2x+π/5) ≠ 0; cos(π/5−x) ≠ 0 (1);2x + π/5 = π/5 − x + kπ, k∈Z (2)(2) ⇔ x = kπ/3, k∈Z

Các giá trị này thỏa mãn điều kiện (1). Vậy ta có: x = kπ/3, k∈Z

d)

cot3x = cot(x+π/3)

⇔ sin3x ≠ 0; sin(x+π/3) ≠ 0(3); 3x = x + π/3 + kπ, k∈Z (4)(4) ⇔ x = π/6 + kπ/2, k∈Z

Nếu k = 2m + 1, m ∈ Z thì các giá trị này không thỏa mãn điều kiện (3).

Suy ra các giá trị cần tìm là x = π/6 + mπ, m∈Z

Giải bài 6 trang 23 Đại số và Giải tích Toán 11 SBT

Giải các phương trình

a) cos 3x - sin 2x = 0

b) tanx. tan 2x = - 1

c) sin 3x + sin 5x = 0

d) cot 2x. cot 3x = 1

Giải:

a)

cos3x − sin2x = 0

⇔ cos3x = sin2x

⇔ cos3x = cos(π/2−2x)

⇔ 3x = ±(π/2−2x) + k2π, k∈Z

⇔[5x = π/2 + k2π, k∈Z; x = −π/2 + k2π, k∈Z

Vậy nghiệm của phương trình là: x = π/10 + k2π/5, k ∈Z  và x = −π/2 + k2π, k ∈ Z

b) Điều kiện của phương trình: cos x ≠ 0 và cos2x ≠ 0

tanx.tan2x = −1

⇒ sinx.sin2x = −cosx.cos2x

⇒ cos2x.cosx + sin2x.sinx = 0

⇒ cosx = 0

Kết hợp với điều kiênh ta thấy phương trình vô nghiệm.

c)

sin3x + sin5x = 0

⇔ 2sin4x.cosx = 0

⇔ [sin4x = 0; cosx = 0

⇔[4x = kπ, k∈Z; x = π/2 + kπ, k∈Z

Vậy nghiệm của phương trình là: x = kπ/4, k∈Z và x = π/2 + kπ, k∈Z

d) Điều kiện: sin2x ≠ 0 và sin 3x ≠ 0 

cot2x.cot3x = 1

⇒ cos2x.cos3x = sin2x.sin3x

⇒ cos2x.cos3x − sin2x.sin3x = 0

⇒ cos5x = 0 ⇒ 5x = π/2 + kπ, k∈Z

⇒x = π/10 + kπ/5, k∈Z

Với k = 2 + 5m, m ∈ Z thì

x = π/10 + (2+5m).π/5 = π/10 + 2π/5 + mπ

= π/2 + mπ, m∈Z

Lúc đó sin2x = sin(π+2mπ) = 0, không thỏa mãn điều kiện.

Có thể suy ra nghiệm phương trình là x = π/10 + kπ/5, k∈Z và k ≠2 + 5m, m ∈ Z

CLICK NGAY vào TẢI VỀ dưới đây để download hướng dẫn Giải SBT Toán 11 trang 22, 23 file word, pdf hoàn toàn miễn phí.

Từ khóa » Giải Bài Tập Sbt Toán 11 Cơ Bản