Giải SBT Toán 11 Bài 1: Hàm Số Lượng Giác
Có thể bạn quan tâm
Nâng cấp gói Pro để trải nghiệm website VnDoc.com KHÔNG quảng cáo, và tải file cực nhanh không chờ đợi.
Tìm hiểu thêm » Mua ngay Từ 79.000đ Hỗ trợ ZaloToán 11 - Hàm số lượng giác
VnDoc xin giới thiệu tới bạn đọc tài liệu Giải SBT Toán 11 bài 1: Hàm số lượng giác, chắc chắn nội dung tài liệu sẽ là nguồn thông tin hữu ích để phục vụ công việc học tập của các bạn học sinh được tốt hơn.
Giải bài tập Toán 11 ôn tập chương 3: Dãy số - Cấp số cộng và cấp số nhân
Giải bài tập Toán 11 bài 4: Cấp số nhân
80 câu hỏi trắc nghiệm cấp số cộng, cấp số nhân
Hàm số lượng giác
Bài 1.1 trang 12 Sách bài tập (SBT) Đại số và giải tích 11
Tìm tập xác định của các hàm số.
a) y=cos.2x/x−1
b) y=tan.x/3
c) y=cot2x
d) y=sin.1/x2−1
Giải:
a) D=R∖{1}
b) cosx/3≠0⇔x/3≠π/2+kπ⇔x≠3π/2+k3π,k∈Z
Vậy D=R∖{3π/2+k3π,k∈Z}
c) sin2x≠0⇔2x≠kπ⇔x≠k.π/2,k∈Z
Vậy D=R∖{k.π/2,k∈Z}
d) D=R∖{−1;1}
Bài 1.2 trang 12 Sách bài tập (SBT) Đại số và giải tích 11
Tìm tập xác định của các hàm số.
a) y=
\(\sqrt{\cos x+1}\)
b) y=3/sin2x−cos2x
c) y=2/cosx−cos3x
d) y=tanx+cotxy=tanx+cotx
Giải:
a) cosx+1≥0,∀x∈R. Vậy D = R
b) sin2x−cos2x=−cos2x≠0⇔2x≠π/2+kπ, k∈Z⇔x≠π/4+k.π/2, k∈Z
Vậy D=R∖{π/4+k.π/2,k∈Z}
c) cosx−cos3x=−2sin2xsin(−x)=4sin2xcosx
⇒cosx−cos3x≠0⇔sinx≠0 và cosx≠0
⇔x≠kπ và x≠π/2+kπ,k∈Z
Vậy D=R∖{k.π/2,k∈Z}
d) tan x và cos x có nghĩa khi sin x ≠ 0 và cos x ≠ 0
Vậy D=R∖{kπ/2,k∈Z}
Bài 1.3 trang 12 Sách bài tập (SBT) Đại số và giải tích 11
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số
a) y=3−2|sinx|
b) y=cosx+cos(x−π3)
c) y=cos2x+2cos2x
d) y=
\(\sqrt{5-2\cos^2x\sin^2x}\)
Giải:
a) 0≤|sinx|≤1nn−2≤−2|sinx|≤0
Vậy giá trị lớn nhất của y = 3 - 2|sin x| là 3, đạt được khi sin x = 0; giá trị nhỏ nhất của y là 1, đạt được khi sin x = ± 1
b) cosx+cos(x−π/3)
=2cos(x−π/6)cosπ/6
=√3cos(x−π/6)
Vậy giá trị nhỏ nhất của y là -√3 đạt được chẳng hạn, tại x=7π/6; giá trị lớn nhất của y là √3, đạt được chẳng hạn tại x=π/6
c) Ta có:
cos2x+2cos2x
=1+cos2x/2+2cos2x
=1+5cos2x/2
Vì -1 ≤ cos2x ≤ 1 nên giá trị lớn nhất của y là 3, đạt được khi x = 0, giá trị nhỏ nhất của y là -2, đạt được khi x=π/2
d) 5−2cos2xsin2x=5−1/2sin22x
Vì 0≤sin22x≤1nn−1/2≤−1/2sin22x≤0
⇒3√2/2≤y≤√5
Suy ra giá trị lớn nhất của y = √5 tại x=k.π/2, giá trị nhỏ nhất là 3√2/2 tại x=π/4+k.π/2
Bài 1.4 trang 13 Sách bài tập (SBT) Đại số và giải tích 11
Với những giá trị nào của x, ta có mỗi đẳng thức sau?
a) 1/tanx=cotx
b) 1/1+tan2x=cos2x
c) 1/sin2x=1+cot2x
d) tanx+cotx=2/sin2x
Giải
a) Đẳng thức xảy ra khi các biểu thức ở hai vế có nghĩa tức là sinx ≠ 0 và cosx ≠ 0. Vậy đẳng thức xảy ra khi x≠k.π/2, k ∈ Z
b) Đẳng thức xảy ra khi cosx ≠ 0, tức là khi x≠π/2++kπ k ∈ Z
c) Đẳng thức xảy ra khi sinx ≠ 0, tức là x≠kπ, k ∈ Z
d) Đẳng thức xảy ra khi sinx ≠ 0 và cosx ≠ 0, tức là x≠k.π/2, k ∈ Z
Bài 1.5 trang 13 Sách bài tập (SBT) Đại số và giải tích 11
Xác định tính chẵn lẻ của các hàm số
a) y=cos2x/x
b) y=x−sinx
c) y=√1−cosx
d) y=1+cosxsin(3π/2−2x)
Giải
a) y=cos2x/x là hàm số lẻ
b) y=x−sinx là hàm số lẻ
c) y=√1−cosx là hàm số chẵn
d) y=1+cosxsin(3π/2−2x) là hàm số chắn
Bài 1.6 trang 13 Sách bài tập (SBT) Đại số và giải tích 11
a) Chứng minh rằng cos2(x+kπ)=cos2x,k∈Z. Từ đó vẽ đồ thị hàm số y = cos 2x
b) Từ đồ thị hàm số y = cos 2x, hãy vẽ đồ thị hàm số y = |cos 2x|
Giải:
a) cos2(x+kπ)=cos(2x+k2π)=cos2x,k∈Z. Vậy hàm số y = cos 2x là hàm số chẵn, tuần hoàn, có chu kì là π.
Đồ thị hàm số y = cos 2x

b) Đồ thị hàm số y = |cos 2x|

Bài 1.7 trang 13 Sách bài tập (SBT) Đại số và giải tích 11
Hãy vẽ đồ thị của các hàm số
a) y = 1 + sin x
b) y = cos x - 1
c) y=sin(x−π/3)
d) y=cos(x+π/6)
Giải:
a) Đồ thị hàm số y = 1 + sin x thu được từ đồ thị hàm số y = sinx bằng cách tịnh tiến song song với trục tung lên phía trên một đơn vị.

b) Đồ thị hàm số y = cos x - 1 thu được từ đồ thị hàm số y = cosx bằng cách tịnh tiến song song với trục tung xuống phía dưới một đơn vị.
c) Đồ thị hàm số y=sin(x−π/3) thu được từ đồ thị hàm số y = sinx bằng cách tịnh tiến song song với trục hoành sang phải một đoạn bằng π/3.

d) Đồ thị hàm số y=cos(x+π/6) thu được từ đồ thị hàm số y = cosx bằng cách tịnh tiến song song với trục hoành sang trái một đoạn bằng π/6.
Bài 1.8 trang 13 Sách bài tập (SBT) Đại số và giải tích 11
Hãy vẽ đồ thị của các hàm số
a) y=tan(x+π/4)
b) y=cot(x−π/6)
Giải:
a) Đồ thị hàm số y=tan(x+π/4) thu được từ đồ thị hàm số y = tanx bằng cách tịnh tiến song song với trục hoành sang trái một đoạn bằng π/4.
b) Đồ thị hàm số y=cot(x−π/6) thu được từ đồ thị hàm số y = cotx bằng cách tịnh tiến song song với trục hoành sang phải một đoạn bằng π/6.
-----------------------------------
Trên đây VnDoc.com đã giới thiệu tới bạn đọc tài liệu: Giải SBT Toán 11 bài 1: Hàm số lượng giác. Để có kết quả cao hơn trong học tập, VnDoc xin giới thiệu tới các bạn học sinh tài liệu Sinh học lớp 11, Vật lý lớp 11, Hóa học lớp 11, Giải bài tập Toán 11 mà VnDoc tổng hợp và đăng tải.
Từ khóa » Hàm Số Lượng Giác Lớp 11 Sách Bài Tập
-
Giải Sách Bài Tập Toán Lớp 11 Hay Nhất
-
Giải SBT Toán Hình Học Và đại Số Giải Tích 11 Cơ Bản
-
Sách Bài Tập Đại Số Và Giải Tích 11 Cơ Bản - Sách Toán - Học Toán
-
Giải Bài Tập SBT Toán 11 Bài 1: Hàm Số Lượng Giác
-
Hướng Dẫn Giải Chi Tiết Bài Tập SBT Toán Lớp 11
-
SBT Toán 11 - Tìm đáp án, Giải Bài Tập, để Học Tốt
-
Bài 1. Hàm Số Lượng Giác
-
CHƯƠNG I. HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG ...
-
Giải Sách Bài Tập Toán 11 Bài 1: Hàm Số Lượng Giác
-
Bài 1.1 Trang 12 Sách Bài Tập (SBT) Đại Số Và Giải Tích 11
-
Giải SBT Toán 11 Chương 1: Hàm Số Lượng Giác Và Phương Trình ...
-
Bài 3.4 Trang 36 Sách Bài Tập (SBT) Đại Số Và Giải Tích 11
-
Giải Sách Bài Tập Toán 11 Tập 1 Trang 206, 207 Chính Xác