- Home
- Lớp 1,2,3
- Lớp 1
- Giải Toán Lớp 1
- Tiếng Việt Lớp 1
- Lớp 2
- Giải Toán Lớp 2
- Tiếng Việt Lớp 2
- Văn Mẫu Lớp 2
- Lớp 3
- Giải Toán Lớp 3
- Tiếng Việt Lớp 3
- Văn Mẫu Lớp 3
- Giải Tiếng Anh Lớp 3
- Lớp 4
- Giải Toán Lớp 4
- Tiếng Việt Lớp 4
- Văn Mẫu Lớp 4
- Giải Tiếng Anh Lớp 4
- Lớp 5
- Giải Toán Lớp 5
- Tiếng Việt Lớp 5
- Văn Mẫu Lớp 5
- Giải Tiếng Anh Lớp 5
- Lớp 6
- Soạn Văn 6
- Giải Toán Lớp 6
- Giải Vật Lý 6
- Giải Sinh Học 6
- Giải Tiếng Anh Lớp 6
- Giải Lịch Sử 6
- Giải Địa Lý Lớp 6
- Giải GDCD Lớp 6
- Lớp 7
- Soạn Văn 7
- Giải Bài Tập Toán Lớp 7
- Giải Vật Lý 7
- Giải Sinh Học 7
- Giải Tiếng Anh Lớp 7
- Giải Lịch Sử 7
- Giải Địa Lý Lớp 7
- Giải GDCD Lớp 7
- Lớp 8
- Soạn Văn 8
- Giải Bài Tập Toán 8
- Giải Vật Lý 8
- Giải Bài Tập Hóa 8
- Giải Sinh Học 8
- Giải Tiếng Anh Lớp 8
- Giải Lịch Sử 8
- Giải Địa Lý Lớp 8
- Lớp 9
- Soạn Văn 9
- Giải Bài Tập Toán 9
- Giải Vật Lý 9
- Giải Bài Tập Hóa 9
- Giải Sinh Học 9
- Giải Tiếng Anh Lớp 9
- Giải Lịch Sử 9
- Giải Địa Lý Lớp 9
- Lớp 10
- Soạn Văn 10
- Giải Bài Tập Toán 10
- Giải Vật Lý 10
- Giải Bài Tập Hóa 10
- Giải Sinh Học 10
- Giải Tiếng Anh Lớp 10
- Giải Lịch Sử 10
- Giải Địa Lý Lớp 10
- Lớp 11
- Soạn Văn 11
- Giải Bài Tập Toán 11
- Giải Vật Lý 11
- Giải Bài Tập Hóa 11
- Giải Sinh Học 11
- Giải Tiếng Anh Lớp 11
- Giải Lịch Sử 11
- Giải Địa Lý Lớp 11
- Lớp 12
- Soạn Văn 12
- Giải Bài Tập Toán 12
- Giải Vật Lý 12
- Giải Bài Tập Hóa 12
- Giải Sinh Học 12
- Giải Tiếng Anh Lớp 12
- Giải Lịch Sử 12
- Giải Địa Lý Lớp 12
Trang Chủ ›
Lớp 10›
Giải Bài Tập Toán 10›
Giải Bài Tập Toán 10 Hình Học›
Bài 1. Phương trình đường thẳng Giải toán 10 Bài 1. Phương trình đường thẳng
§1. PHƯƠNG TRÌNH ĐƯỜNG THANG A. KIẾN THỨC CĂN BẢN Vectơ chỉ phương của đường thẳng Định nghĩa: Vectơ U được gọi là vectơ chỉ phương của đường thẳng A nếu U * 0 và giá của U song song hoặc trùng A. Phương trình tham sô' của đường thẳng X = x0 + y = y0 + u2t (t e R) Định nghĩa: Trong mặt phẳng Oxy cho đường thẳng A đi qua điểm M0(x0; y0) và nhận U (Ui; u2) làm vectơ chỉ phương. Phương trình tham sô' của đường thẳng A là: u9 . Nêu Ui * 0 thì k = — là hệ sô góc của A. U1 Vectơ pháp tuyến của đường thẳng Định nghĩa: Vectơ n được gọi là vectơ pháp tuyến của đường thẳng A nếu n*0 và n vuông góc với vectơ ch? phương của A. Phương trình tổng quát của đường thẳng Định nghĩa: Phương trình ax + by + c = 0 với a và b không đồng thời bằng 0, được gọi là phương trình tổng quát của đường thẳng. Nhận xét: Nếu đường thẳng A có phương trình là ax + by + c = 0 thì A có vectơ pháp tuyến là n = (a; b) và vectơ chỉ phương là U = (-b; a). Phương trình đường thẳng theo đoạn chắn Đường thẳng A cắt Ox và Oy lần lượt tại M(a, 0) và N(0; b) (với a * 0, b * 0) có phương trình là: — + Ị = 1 a b VỊ trí tương đổi của hai đường thẳng ChoA,: aìX + b,y + c, = 0 A2: a2x + b2y + c2 = 0 A,, A2 cắt nhau A-I H A2 a1 b1 = 0 ai bi • a2 b2 hoặc • a2 b2 b1 Cl *0 C1 ai b2 c2 c2 a2 *0 , , a. bi A2 cat nhau -A. —L Ai — A2 o Trường hợp a2, b2, c2 đều khác 0, thì: „ . ai bi C1 A, // A2 —L = -—L TÍ — ai bi C1 A( = A2 AA- = p- = -Al. a2 b2 c2 Góc giữa hai đưởng thẳng Hai đường thẳng a và b cắt nhau tạo thành bốn góc. Số đo nhỏ nhất của các góc đó được gọi (à số đo của góc giữa hai đường thẳng a và b, hay góc giữa a và b. Khi a song song hoặc trùng với b ta quy ước góc giữa chúng bằng 0° Cho A|: A,x + B^y + C-I = 0 và A2: A2X + B2y + c2 = 0 a là góc giữa A, và A2 thì cosa = I A4An + B.|B2 ị i'f2 1 A2+B2 = COS (rvnJ Đặc biệt: ả) 1A2o A,A2 + B,B2 = 0 Nếu Ai và A2 có phương trình y - k,x + m, và y = k2x + m2 thì Ai 1 A2 k1.k2 = - 1. Công thức tính khoảng cách từ một điểm đến một đường thẳng Trong mặt phẳng Oxy cho đường thẳng A có phương trình ax + by + c = 0 và điểm M0(x0; yo). Khoảng cách từ điểm Mo đến đường thẳng A, kí hiệu là d(M0,A). được tính bởi công thức: d(M0,A): Ti |ax0 +by0 + c| B. PHƯƠNG PHÁP GIẢI BÀI TẬP Lập phương trình tham sô' của đường thẳng d trong mỗi trường hợp sau: d đi qua điểm M(2; 1) và có vectơ chỉ phương u = (3; 4); d đi qua điểm M(-2; 3) và vectơ pháp tuyến là n = (5; 1). (ỹiắé Ta có: M(2; 1) và U = (3; 4). Phương trình tham số của đường thẳng d đi qua điểm M và có vectơ , , , " - fx = 2 + 3t chỉ phương u là: < [y = l + 4t M(-2; 3); vectơ pháp tuyến n = (5; 1) thì d có vectơ chỉ phương U = (1; -5) , f X = -2 + t Phương trình tham sô của d là: < [y = 3-5t Lập phương trình tổng quát của đường thẳng A trong mỗi trường hợp sau: A đi qua M(-5; -8) và có hệ sô’ góc k = -3; b) A đi qua hai điểm A(2; 1) và B(-4; 5). ỹiắi Phương trình đường thẳng A đi qua M(-5; -8) có hệ sô' góc k = -3 là: y - yM = k(x - XM) y + 8 = -3(x + 5) 3x + y + 23 = 0 A có vectơ chỉ phương AB = (-6; 4) x , •> » V - íx = 2 - 6t Phương trình tham sô của đường thắng A đi qua A và B là: < [y = l + 4t Khử t ta được: x -2 = y -1 2x + 3y - 7 - 0. 3. -6 4 Cho tam giác ABC, biết A(1; 4), B(3; -1) và C(6; 2). Lập phương trình tổng quát của các đường thẳng AB, BC và CA; Lập phương trình tổng quát cùa đường cao AH và trung tuyến AM. Phương trình tổng quát của đường thẳng AB là: X~*A = y-yA -5x + 5 = 2y - 8 o 5x + 2y - 13 = 0 XB-XA yB-yA 3-1 -1"4 Tương tự BC: X - y - 4 = 0; CA: 2x + 5y - 22 = 0 Đường cao AH đi qua A( 1; 4) vuông góc với BC nên AH: X + y + c = 0 AH qua A(l; 4) nên l + 4 + C = 0=>C = -5. Vậy phương trình đường cao AH: X + y - 5 = 0. M là trung điểm của BC thì M Phương trình trung tuyến AM: ^x+y-5 = 0. XA-XM yA-yM 4_i 2 2 Viết phương trinh tổng quát của đường thẳng đi qua điểm M(4; 0) và điểm N(0; -1). Áp dụng phương trình đoạn chắn. Phương trình đường thẳng qua hai điểm M(4; 0) và N(0; -1) là 4 + “ = lo-x + 4y + 4 = 0 X - 4y - 4 = 0. 4-1 7 J Xét vị trí tương đối của các cặp đường thẳng Ơ1 và d2 sau đày: df 4x - 10y + 1 = 0 và d2: X + y + 2 = 0; dt: 12x - 6y + 10 = 0 và d2: c = 5 + t_ [y = 3 + 2t d,:8x+ 10y - 12 = 0 và d2: jx = z6 + 5t ly = 6-4t 4 -10 Ta có — —— nên di và d2 cắt nhau. 11 Phương trình t ,ng quát của d2 là: d2 : 2x - y - 7 = 0. _ , 12 -6 10 , .. , Ta có — = nên di // d2. 2-1-7 Phương trình tổng quát của d2 là: d2: 4x + 5y - 6 = 0. , 8 _ 10 _ -12 . , _ , Ta có — = = —— nên di = d2. IX 2 I 6. Cho đường thẳng d có phương trinh tham sô' 4 5-6 y = 3 + t Tìm điểm M thuộc d và cách điểm A(0; 1) một khoảng bằng 5. ỹiẰi Ta có M(2 + 2t; 3 + t) e d và AM = 5 AM = 5 AM2 = 25 (2 + 2t)2 + (2 + t)2 = 25 5t2 + 12t - 17 = 0 » Vậy có hai điểm M thoả mãn đề bài là: Mi(4; 4); M2^-^;--|j. Tìm số đo của góc giữa hai đường thẳng dt và ci2 lần lượt có phương trình dư4x-2y + 6 = 0 và d2: X - 3y + 1 = 0. ỹiẦí Ta có dp 4x - 2y + 6 = 0 d2: X - 3y + 1 = 0. Gọi tp là góc giữa di và d2 có: costp = 10 _ 72 1072 - 2 |aia2+bib2| _ |4 + 6| _ 10 - VĩẽTĨ.TĩTõ " 72Õ.7ĨÕ Vậy: (p = 45°. A(3; 5), B(1;-2), C(1;2), Tìm khoảng cách từ một điểm đến đường thẳng trong các trường hợp sau: A: 4x + 3y + 1 =0; d: 3x - 4y - 26 = 0; m: 3x + 4y - 11 =0. Ta có A(3; 5) A: 4x + 3y + 1 = 0 Ta có C(l; 2) m: 3x + 4y - 11 = 0 d(C,m) , l” ựgl- nl ■ 0 . vậỵ c e m. 79 + 16 Tim bán kính của đường trồn tàm C(-2; -2) tiếp xúc với đường thẳng A: 5x+ 12y-10 = 0 ỹiải Bán kính đường tròn là khoảng cách từ c đến A. R g d(C, A) = 725 +144 13 „ 44 Vậy R = c. BÀI TẬP LÀM THÊM Cho tam giác ABC có phương trinh cạnh AB là 6x - 3y + 2 = 0. Các đường cao qua đỉnh A và B lần lượt là 4x - 3y + 1 = 0,7x + 2y - 22 = 0. Lập phương trình tổng quát hai cạnh AC, BC và đường cao qua c. ‘rựcứcttỹ (tẩn Gọi H là trực tâm tam giác ABC: (A) = AB r\ AH => A(-l; -1) |B( = AB n HB => B(2; 4) AC: 2x - 7y - 5 - 0; BC: 3x + 4y - 22 = 0; CH: 3x + 5y - 23 = 0 Viết phương trinh tổng quát các cạnh của tam giác ABC nếu cho B(-4; -5) và hai đường cao có phương trình là: 5x + 3y - 4 = 0 và 3x + 8y + 13 = 0 Giả sử hai đường cao AH: 3x + 8y.+ 13 = 0; CK: 5x + 3y - 4 = 0 AB qua A và vuông góc với CK nên AB: 3x - 5y - 13 = 0 BC qua B và vuông góc với AH nên BC: 8x - 3y + 17 = 0 AC: 5x + 2y - 1 = 0 Cho ba trung điểm của ba cạnh của tam giác là: M, (2 ; 1), M2(5 ; 3), M3(3; -4). Viết phương trinh tổng quát các cạnh của tam giác. a) 2x + 3y + 1 =0 và 4x + 5y - 6 = 0; b) 4x - y + 2 = 0 và -8x + 2y + 1 =0; c) 3x - 2y + 1 =0 và -6x + 4y - 2 = 0. 5. Viết phương trình các cạnh của tam giác ABC nếu cho A(1; 3) và hai Xét vị trí tương đối của các cặp đường thẳng sau đây, nếu chúng cắt nhau thì tìm tọa độ giao điểm. đường trung tuyến có phương trình là: X - 2y + 1 = 0 và y - 1 =0. Cho tam giác ABC, có trung điểm một cạnh là M(-1; 1) còn hai cạnh kia có phương trinh là X + y - 2 = 0 và 2x + 6y + 3 = 0. Xác định tọa độ các đỉnh của tam giác. dẳtí Giả sử M là trung điểm BC, hai cạnh có phương trình đã cho là AB, AC. Xác định được A, các trung điểm p, Q của các cạnh AB và AC. Cho hình vuông đỉnh A(-4; 5) và một đường chéo đặt trên đường thẳng 7x - y + 8 = 0. Viết phương trình các cạnh và đường chéo thứ hai của hình vuông. dẩti Đường chéo AC: X + 7y - 31 = 0 Đường thẳng AB hợp với đường chéo AC một góc 45°. Cho hai điểm P(2; 5) và Q(5; 1). Viết phương trình đường thẳng đi qua p sao cho khoảng cách từ Q đến đường thẳng đó bằng 3. ĩ)afitĩ: 7x + 24y — 134 = 0. Cho tam giác ABC có diện tích bằng , hai đỉnh A(3; -3), B(3; -2) và trọng tâm G của tam giác nằm trên đường thẳng 3x - y - 8 = 0. Tìm tọa độ đỉnh c. Cho ba đường thẳng dư 3x + 4y - 6 = 0; d2: 4x + 3y - 1 = 0; d3: y = 0. Gọi A là giao điểm của d, và d2, {B} = d2 n d3; {C} = d, nd2 Viết phương trình phân giác trong của góc A và tính diện tích tam giác ABC. Tìm tâm và bán kính đường tròn nội tiếp AABC. Viết phương trình đường thẳng đi qua điểm P(2; 1) sao cho đường thẳng đó cùng với hai đường thẳng d(: 2x - y + 5 = 0 và đ2: 3x + 6y - 1 =0 tạo thành một tam giác cân có đỉnh là giao điểm của dì và d2. 4».' 3x + y - 5 = 0; X - 3y - 5 = 0.
Các bài học tiếp theo
- Bài 2. Phương trình đường tròn
- Bài 3. Phương trình đường elip
- Ôn tập chương III
- Câu hỏi trắc nghiệm
- Ôn tập cuối năm
Các bài học trước
- Câu hỏi trắc nghiệm
- Ôn tập chương II
- Bài 3. Các hệ thức lượng trong tam giác và giải tam giác
- Bài 2. Tích vô hướng cảu hai vectơ
- Bài 1. Giá trị lượng giác của một góc bất kỳ từ 0 độ đến 180 độ
- Bài tập làm thêm
- Câu hỏi trắc nghiệm
- Ôn tập chương I
- Bài 4. Hệ trục tọa độ
- Bài 3. Tích của vectơ với một số
Tham Khảo Thêm
- Giải Bài Tập Toán 10 Đại Số
- Giải Bài Tập Toán 10 Hình Học(Đang xem)
- Giải Toán 10 Đại Số
- Giải Toán 10 Hình Học
- Giải Bài Tập Hình Học 10
- Sách Giáo Khoa - Đại Số 10
- Sách Giáo Khoa - Hình Học 10
Giải Bài Tập Toán 10 Hình Học
- Chương I. Vectơ
- Bài 1. Các định nghĩa
- Bài 2. Tổng và hiệu của hai vectơ
- Bài 3. Tích của vectơ với một số
- Bài 4. Hệ trục tọa độ
- Ôn tập chương I
- Câu hỏi trắc nghiệm
- Bài tập làm thêm
- Chương II. Tích vô hướng của hai vectơ và ứng dụng
- Bài 1. Giá trị lượng giác của một góc bất kỳ từ 0 độ đến 180 độ
- Bài 2. Tích vô hướng cảu hai vectơ
- Bài 3. Các hệ thức lượng trong tam giác và giải tam giác
- Ôn tập chương II
- Câu hỏi trắc nghiệm
- Chương III. Phương pháp tọa độ trong mặt phẳng
- Bài 1. Phương trình đường thẳng(Đang xem)
- Bài 2. Phương trình đường tròn
- Bài 3. Phương trình đường elip
- Ôn tập chương III
- Câu hỏi trắc nghiệm
- Ôn tập cuối năm